Nanotechnologies for Fuel Cells

  • Jong-Eun Park
  • Takahiro Shimizu
  • Tetsuya Osaka
Part of the Nanostructure Science and Technology book series (NST)


Fuel cells, which convert chemical energy directly into electrical energy with high efficiency and low emission, are currently attracting interest because of their huge potential for power generation in stationary and portable devices, transport applications, and sustainable energy production. Direct methanol fuel cells (DMFCs) are especially attractive as portable power sources because of characteristics such as simple construction, easy operation, liquid fuel, and high efficiency [1, 2].

DMFCs use methanol as fuel and generate electricity through the electrochemical reaction of methanol in the presence of catalyst. They are similar to polymer electrolyte membrane fuel cells (PEMFCs) as both types of cells use a polymer membrane as the electrolyte. The structure of DMFCs is simple because the system does not require fuel reforming steps to take protons out of alcohol or fossil fuel, which are required for hydrogen–oxygen fuel cells [3]. In addition, methanol, commonly used alcohol, has the advantage of high energy density, offering the consumer the potential for longer operating time and system with increased functionality.


Fuel Cell Concentration Polarization Direct Methanol Fuel Cell Micro Electro Mechanical System Hydrogen Peroxide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ren X, Wilson MS, Gottesfeld S (1996) J Electrochem Soc 143:L12CrossRefGoogle Scholar
  2. 2.
    Kim D, Cho EA, Hong SA, Oh IH, Ha HY (2004) J Power Sourc 130:172CrossRefGoogle Scholar
  3. 3.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sourc 105:283CrossRefGoogle Scholar
  4. 4.
    Maynard HL, Meyers JP (2002) J Vac Sci Technol B 20:1287CrossRefGoogle Scholar
  5. 5.
    Kelley CS, Deluga GA, Smyrl WH (2000) Electrochem Solid-State Lett 3:407Google Scholar
  6. 6.
    Kelley CS, Deluga GA, Smyrl WH (2002) AIChE J 48:1071CrossRefGoogle Scholar
  7. 7.
    Yamazaki Y (2004) Electrochimica Acta 50:663CrossRefGoogle Scholar
  8. 8.
    Wainright JS, Savinell RF, Liu CC, Litt M (2003) Electrochim Acta 48:2869CrossRefGoogle Scholar
  9. 9.
    Lu GQ, Wang CY, Yen TJ, Zhang X (2004) Electrochimica Acta 49:821CrossRefGoogle Scholar
  10. 10.
    Yu J, Cheng P, Ma Z, Yi B (2003) Electrochimica Acta 48:1537CrossRefGoogle Scholar
  11. 11.
    Min K, Tanaka S, Esashi M (2002) Electrochemistry 70:924Google Scholar
  12. 12.
    Hayase M, Kawase T, Hatsuzawa T (2004) Electrochem Solid-State Lett 7:A231CrossRefGoogle Scholar
  13. 13.
    Yu J, Cheng P, Ma Z, Yi B (2003) J Power Sourc 124:40CrossRefGoogle Scholar
  14. 14.
    Yen TJ, Fang N, Zhang X, Lu GQ, Wang CY (2003) Appl Phys Lett 83:4056CrossRefGoogle Scholar
  15. 15.
    Lu GQ, Wang CY, Yen TJ, Zhang X (2004) Electrochim Acta 49:821CrossRefGoogle Scholar
  16. 16.
    Motokawa S, Mohamedi M, Momma T, Shoji S, Osaka T (2004) Electrochem Commun 6:562CrossRefGoogle Scholar
  17. 17.
    Motokawa S, Mohamedi M, Momma T, Shoji S, Osaka T (2005) Electrochemistry 73:346Google Scholar
  18. 18.
    Motokawa S, Obata H, Mohamedi M, Momma T, Shoji S, Osaka T (2005) Electrochemistry 73:352Google Scholar
  19. 19.
    Philipsen HGG, Kelly JJ (2005) J Phys Chem B 109:17245CrossRefGoogle Scholar
  20. 20.
    Kovacs GTA, Maluf NI, Petersen KE (1998) Proceedings of the IEEE 86:1536CrossRefGoogle Scholar
  21. 21.
    Narita E, Lawson F, Han KN (1983) Hydrometallury 10:21CrossRefGoogle Scholar
  22. 22.
    Choban ER, Spendelow JS, Gancs L, Wickowski A, Kenis PJA (2005) Electrochimica Acta 50:5390CrossRefGoogle Scholar
  23. 23.
    Choban ER, Waszczuk P, Kenis PJ (2005) Electrochem and Solid-State Lett 8:A348CrossRefGoogle Scholar
  24. 24.
    Bard AJ, Faulkner LR (2001) Electrochemical methods; fundamentals and applications, 2nd edn. John Wiley, New YorkGoogle Scholar
  25. 25.
    Savadogo O (2004) J Power Sourc 127:135CrossRefGoogle Scholar
  26. 26.
    Larminie J, Dicks A (2000) Fuel cells explained. John Wiley, West Sussex, EnglandGoogle Scholar
  27. 27.
    Haile SM (2003) Acta Mater 51:5981CrossRefGoogle Scholar
  28. 28.
    Shimizu T, Momma T, Mohamedi M, Osaka T, Sarangapani S (2004) J Power Sourc 137:277CrossRefGoogle Scholar
  29. 29.
    Shimizu T, Mohamedi M, Momma T, Osaka T (2006) Electrochemistry 74:326CrossRefGoogle Scholar
  30. 30.
    Prater DN, Rusek JJ (2003) Appl Energy 74:135CrossRefGoogle Scholar
  31. 31.
    Bewer T, Beckmann T, Dohle H, Stolten JM (2004) J Power Sourc 125:1CrossRefGoogle Scholar
  32. 32.
    Hasegawa S, Shimotani K, Kishi K, Watanabe H (2005) Electrochem Solid-State Lett 8:A119CrossRefGoogle Scholar
  33. 33.
    Narayanan SR, Valder TI, Chun W (2002) United States Patent, 6,485,851Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jong-Eun Park
    • 1
    • 2
  • Takahiro Shimizu
    • 1
    • 3
  • Tetsuya Osaka
    • 1
  1. 1.Faculty of Science and EngineeringWaseda UniversityShinjuku-kuJapan
  2. 2.Samsung Electro-Mechanics Co., Ltd.KyotoJapan
  3. 3.Fuel Cell Nanomaterials CenterUniversity of YamanashiYamanashiJapan

Personalised recommendations