Nanotechnologies for Li Batteries

  • Hitomi Mukaibo
  • Toshiyuki Momma
Part of the Nanostructure Science and Technology book series (NST)


Batteries store chemical energy, which is converted into electric energy by electrochemical reactions. Those that cannot be used once the electric energy is totally discharged are called primary cell. Batteries that can induce chemical reaction by charging electric energy to reactivate the electrode material and be used many times are called secondary batteries.

Due to the rapid growth of electrical and mechanical integration technologies such as wireless telecommunications, emerging integrated optoelectronic circuits, and rapidly growing microelectromechanical systems (MEMS), secondary batteries that are mounted on semiconductor tips are attracting attention throughout the world. In Table 2.1, conventional batteries have been classified according to their application. The expected power of the microbatteries is between 102 and 103μW cm−2 in the temperature range −20 to 80°C, and a capacity of up to 103μAhcm−2 with a required operating voltage range of 2–3 V . The number of cycles depends on applications: primary cell may be sufficient for smart cards whereas applications in aerospace require more than 104 cycles. The battery proximity to microelectronic components is required to prevent any liquid leakage. The thickness of the battery should not exceed 0.3–3 mm including packaging. The battery surface area depends on the power requirement and may vary from 10−2 to 20 cm2 [1].


Smart Card Electrode Array Secondary Batterie Silicon Mold Lithium Anode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Souquet JL, Duclot M (2002) Solid State Ionics 148:375CrossRefGoogle Scholar
  2. 2.
    Julien C, Nazri G-A (1994) Solid state batteries: materials design and operation. Kluwer Academic Publishers, Massachusetts, USACrossRefGoogle Scholar
  3. 3.
    Julien C (1994) In: Pistoia G (ed) Lithium batteries new materials, developments and perspectives. In Industrial Chemistry Library. Volume 5. Elsevier Science, Amsterdam, NetherlandsGoogle Scholar
  4. 4.
    Balkanski M (2000) Solar energy mater. Solar Cells 62:21Google Scholar
  5. 5.
    Levasseur A, Menetrier M, Dormoy R, Meunier G (1989) Mat Sci Eng B3:5Google Scholar
  6. 6.
    West AC, Matlosz M, Landolt D (1991) J Electrochem Soc 138:728CrossRefGoogle Scholar
  7. 7.
    Orazem M, Newman J (1984) J Electrochem Soc 131:2857CrossRefGoogle Scholar
  8. 8.
    Mao Z, White RE, Jay B (1991) J Electrochem Soc 138:1615CrossRefGoogle Scholar
  9. 9.
    Hart RW, White HS, Dunn R, Rolison DR (2003) Electrochem Comm 5:120CrossRefGoogle Scholar
  10. 10.
    Sukumar V, Alahmad M, Buck K, Hess H, Li H, Cox D, Zghoul FN, Jackson J, Terry S, Blalock B, Mojarradi MM, West WC, Whitacre JF (2004) J Power Sourc 136:401CrossRefGoogle Scholar
  11. 11.
    Koeneman PB, Busch-Vishniac IJ, Wood KL (1997) J Microelectromech Syst 6:355CrossRefGoogle Scholar
  12. 12.
    Harb JN, LaFollette RM, Selfridge RH, Howell LL (2002) J Power Sourc 104:46CrossRefGoogle Scholar
  13. 13.
    Meunier G, Dormoy R, Levasseur A (1989) Mater Sci Eng B3:19CrossRefGoogle Scholar
  14. 14.
    Kanehori K, Matsumoto K, Miyauchi K, Kudo J (1983) Solid State Ionics 9–10:1445CrossRefGoogle Scholar
  15. 15.
    Creus R, Sarradin J, Astier R, Pradel A, Ribes M (1989) Mater Sci Eng B3:109CrossRefGoogle Scholar
  16. 16.
    Levasseur A, Kbala M, Hagenmuller P, Couturier G, Danto Y (1983) Solid State Ionics 9–10:1439CrossRefGoogle Scholar
  17. 17.
    Miyauchi K, Matsumoto K, Kanehori K, Kudo T (1983) Solid State Ionics 9–10:1469CrossRefGoogle Scholar
  18. 18.
    Jones SD, Akridge JR (1995) J Power Sourc 54:63CrossRefGoogle Scholar
  19. 19.
    Jones SD, Akridge JR (1993) J Power Sourc 43–44:505CrossRefGoogle Scholar
  20. 20.
    Hèrold A (1955) Bull Soc Chim 187:999Google Scholar
  21. 21.
    Guèrard D, Hèrold A (1975) Carbon 13:337CrossRefGoogle Scholar
  22. 22.
    Besenhard JO, Fritz HP (1974) J Electroanal Chem 53:329CrossRefGoogle Scholar
  23. 23.
    Besenhard JO (1976) Carbon 14:111CrossRefGoogle Scholar
  24. 24.
    Mohri M, Yanagisawa N, Tajima Y, Tanaka H, Mitate T, Nakajima S, Yoshida M, Yoshimoto Y, Suzuki T, Wada H (1989) J Power Sourc 26:545CrossRefGoogle Scholar
  25. 25.
    Nagaura T, Tozawa K (1990) Prog Batt Solar Cells 9:209Google Scholar
  26. 26.
    Long JW, Dunn B, Rolison DR, White HS (2004) Chem Rev 104:4463CrossRefGoogle Scholar
  27. 27.
    Kinoshita K, Song X, Kim J, Inaba M (1999) J Power Sourc 81–82:170CrossRefGoogle Scholar
  28. 28.
    Kim J, Song X, Kinoshita K, Madou M, White B (1998) J Electrochem Soc 145:2314CrossRefGoogle Scholar
  29. 29.
    Kostecki R, Song XY, Kinoshita K (2000) J Electrochem Soc 147:1878CrossRefGoogle Scholar
  30. 30.
    Ranganathan S, McCreery R, Majji SM, Madou M (2000) J Electrochem Soc 147:277CrossRefGoogle Scholar
  31. 31.
    Kostecki R, Song XY, Kinoshita K (2002) Electrochem Solid-State Lett 5:E29CrossRefGoogle Scholar
  32. 32.
    Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, Dunn B (2004) Electrochem Solid-State Lett 7:A435CrossRefGoogle Scholar
  33. 33.
    Nathan M, Golodnitsky D, Yufit V, Strauss E, Ripenbein T, Shechtman I, Menkin S, Peled E (2005) J Microelectromech Syst 14:879CrossRefGoogle Scholar
  34. 34.
    Golodnitsky D, Yufit V, Nathan M, Shechtman I, Ripenbein T, Strauss E, Menkin S, Peled E (2006) J Power Sourc 153:281CrossRefGoogle Scholar
  35. 35.
    Lehmann V, Foll H (1990) J Electrochem Soc 137:653CrossRefGoogle Scholar
  36. 36.
    Chamran F, Christophersen M, Kim C-J, In Abstracts of the 204th Meeting of the Electrochemical Society, Electrochemical Society: Pennington, NJ, 2003; Abst. #1292Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringWaseda UniversityShinjuku-kuJapan

Personalised recommendations