Skip to main content

Nanotechnologies for Li Batteries

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Batteries store chemical energy, which is converted into electric energy by electrochemical reactions. Those that cannot be used once the electric energy is totally discharged are called primary cell. Batteries that can induce chemical reaction by charging electric energy to reactivate the electrode material and be used many times are called secondary batteries.

Due to the rapid growth of electrical and mechanical integration technologies such as wireless telecommunications, emerging integrated optoelectronic circuits, and rapidly growing microelectromechanical systems (MEMS), secondary batteries that are mounted on semiconductor tips are attracting attention throughout the world. In Table 2.1, conventional batteries have been classified according to their application. The expected power of the microbatteries is between 102 and 103μW cm−2 in the temperature range −20 to 80°C, and a capacity of up to 103μAhcm−2 with a required operating voltage range of 2–3 V . The number of cycles depends on applications: primary cell may be sufficient for smart cards whereas applications in aerospace require more than 104 cycles. The battery proximity to microelectronic components is required to prevent any liquid leakage. The thickness of the battery should not exceed 0.3–3 mm including packaging. The battery surface area depends on the power requirement and may vary from 10−2 to 20 cm2 [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Souquet JL, Duclot M (2002) Solid State Ionics 148:375

    Article  CAS  Google Scholar 

  2. Julien C, Nazri G-A (1994) Solid state batteries: materials design and operation. Kluwer Academic Publishers, Massachusetts, USA

    Book  Google Scholar 

  3. Julien C (1994) In: Pistoia G (ed) Lithium batteries new materials, developments and perspectives. In Industrial Chemistry Library. Volume 5. Elsevier Science, Amsterdam, Netherlands

    Google Scholar 

  4. Balkanski M (2000) Solar energy mater. Solar Cells 62:21

    CAS  Google Scholar 

  5. Levasseur A, Menetrier M, Dormoy R, Meunier G (1989) Mat Sci Eng B3:5

    CAS  Google Scholar 

  6. West AC, Matlosz M, Landolt D (1991) J Electrochem Soc 138:728

    Article  CAS  Google Scholar 

  7. Orazem M, Newman J (1984) J Electrochem Soc 131:2857

    Article  CAS  Google Scholar 

  8. Mao Z, White RE, Jay B (1991) J Electrochem Soc 138:1615

    Article  CAS  Google Scholar 

  9. Hart RW, White HS, Dunn R, Rolison DR (2003) Electrochem Comm 5:120

    Article  CAS  Google Scholar 

  10. Sukumar V, Alahmad M, Buck K, Hess H, Li H, Cox D, Zghoul FN, Jackson J, Terry S, Blalock B, Mojarradi MM, West WC, Whitacre JF (2004) J Power Sourc 136:401

    Article  CAS  Google Scholar 

  11. Koeneman PB, Busch-Vishniac IJ, Wood KL (1997) J Microelectromech Syst 6:355

    Article  Google Scholar 

  12. Harb JN, LaFollette RM, Selfridge RH, Howell LL (2002) J Power Sourc 104:46

    Article  CAS  Google Scholar 

  13. Meunier G, Dormoy R, Levasseur A (1989) Mater Sci Eng B3:19

    Article  Google Scholar 

  14. Kanehori K, Matsumoto K, Miyauchi K, Kudo J (1983) Solid State Ionics 9–10:1445

    Article  Google Scholar 

  15. Creus R, Sarradin J, Astier R, Pradel A, Ribes M (1989) Mater Sci Eng B3:109

    Article  Google Scholar 

  16. Levasseur A, Kbala M, Hagenmuller P, Couturier G, Danto Y (1983) Solid State Ionics 9–10:1439

    Article  Google Scholar 

  17. Miyauchi K, Matsumoto K, Kanehori K, Kudo T (1983) Solid State Ionics 9–10:1469

    Article  Google Scholar 

  18. Jones SD, Akridge JR (1995) J Power Sourc 54:63

    Article  CAS  Google Scholar 

  19. Jones SD, Akridge JR (1993) J Power Sourc 43–44:505

    Article  Google Scholar 

  20. Hèrold A (1955) Bull Soc Chim 187:999

    Google Scholar 

  21. Guèrard D, Hèrold A (1975) Carbon 13:337

    Article  Google Scholar 

  22. Besenhard JO, Fritz HP (1974) J Electroanal Chem 53:329

    Article  CAS  Google Scholar 

  23. Besenhard JO (1976) Carbon 14:111

    Article  CAS  Google Scholar 

  24. Mohri M, Yanagisawa N, Tajima Y, Tanaka H, Mitate T, Nakajima S, Yoshida M, Yoshimoto Y, Suzuki T, Wada H (1989) J Power Sourc 26:545

    Article  CAS  Google Scholar 

  25. Nagaura T, Tozawa K (1990) Prog Batt Solar Cells 9:209

    CAS  Google Scholar 

  26. Long JW, Dunn B, Rolison DR, White HS (2004) Chem Rev 104:4463

    Article  CAS  Google Scholar 

  27. Kinoshita K, Song X, Kim J, Inaba M (1999) J Power Sourc 81–82:170

    Article  Google Scholar 

  28. Kim J, Song X, Kinoshita K, Madou M, White B (1998) J Electrochem Soc 145:2314

    Article  CAS  Google Scholar 

  29. Kostecki R, Song XY, Kinoshita K (2000) J Electrochem Soc 147:1878

    Article  Google Scholar 

  30. Ranganathan S, McCreery R, Majji SM, Madou M (2000) J Electrochem Soc 147:277

    Article  CAS  Google Scholar 

  31. Kostecki R, Song XY, Kinoshita K (2002) Electrochem Solid-State Lett 5:E29

    Article  Google Scholar 

  32. Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, Dunn B (2004) Electrochem Solid-State Lett 7:A435

    Article  Google Scholar 

  33. Nathan M, Golodnitsky D, Yufit V, Strauss E, Ripenbein T, Shechtman I, Menkin S, Peled E (2005) J Microelectromech Syst 14:879

    Article  CAS  Google Scholar 

  34. Golodnitsky D, Yufit V, Nathan M, Shechtman I, Ripenbein T, Strauss E, Menkin S, Peled E (2006) J Power Sourc 153:281

    Article  CAS  Google Scholar 

  35. Lehmann V, Foll H (1990) J Electrochem Soc 137:653

    Article  CAS  Google Scholar 

  36. Chamran F, Christophersen M, Kim C-J, In Abstracts of the 204th Meeting of the Electrochemical Society, Electrochemical Society: Pennington, NJ, 2003; Abst. #1292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Momma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mukaibo, H., Momma, T. (2010). Nanotechnologies for Li Batteries. In: Osaka, T., Datta, M., Shacham-Diamand, Y. (eds) Electrochemical Nanotechnologies. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1424-8_2

Download citation

Publish with us

Policies and ethics