Microelectronic Packaging Trends and the Role of Nanotechnology

  • Madhav Datta
Part of the Nanostructure Science and Technology book series (NST)


The microelectronic packaging industry is undergoing major changes to keep pace with the ever-increasing demands imposed by high performing chips and by end-use system applications. Solutions using advanced materials for microprocessor interconnect scaling and chip package interconnects, novel concepts in heat management systems, and improvements in package substrates continue to drive major packaging efforts. Advances in electrochemical technologies have played an important role in the evolution of such solutions for miniaturization of microelectronic devices and packages. Indeed, since the development of through-mask plating for thin film heads in the1960s and 1970s, an enormous amount of industrial and academic R&D effort has positioned electrochemical processing among the most sophisticated processing technologies employed in the microelectronics industry today [1–4]. Electrochemical processing is perhaps better understood than some of the dry processing technologies used in the microelectronics industry. Compared to other competing dry processing technologies, it has emerged as a more environmentally-friendly and cost-effective fabrication method. Electrochemical processing has, thus, become an integral part of advanced wafer processing fabs and an enabling technology for nanofabrication [5]. As the electronics industry faces the challenges of extending Moore’s law, electrochemical processing is expected to continue to enable further miniaturization of high-performance chip interconnects, packages, and printed circuit boards. Evolving novel approaches to electrochemical processing using nano-materials and nano-fabrication techniques have started to make tremendous impact on further miniaturization of high performance devices and packages. A detailed discussion of different facets of technology advances in electronic packaging is difficult to present in the limited space of this chapter. The current chapter, therefore, makes an effort to capture some of the key developments in microelectronic packaging while highlighting the impact of electrochemical processing. Also included is a brief discussion of some of the foreseeable applications of nano-materials and nano-structures in advanced packaging.


Solder Bump Bismuth Telluride Heat Spreader Thermal Interface Material Microelectronic Packaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Romankiw LT, Croll I, Hatzakis M (1970) IEEE Trans Magn 6:729CrossRefGoogle Scholar
  2. 2.
    Romankiw LT (1997) Electrochim Acta 42:2985CrossRefGoogle Scholar
  3. 3.
    Osaka T (1997) Electrochim Acta 42:3015CrossRefGoogle Scholar
  4. 4.
    Datta M, Landolt D (2000) Electrochim Acta 45:2535CrossRefGoogle Scholar
  5. 5.
    Datta M (2003) Electrochim Acta 48:2975CrossRefGoogle Scholar
  6. 6.
    Rymaszewski EJ, Tummala RR, Watari T (1997). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part I, 2nd edn. Chapman and Hall, New YorkGoogle Scholar
  7. 7.
    Tummala RR, Garrou P, Gupta T, Kuramoto N, Niwa K, Shimda Y, Terasawa M (1999). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part II, 2nd edn. Kluwer Academic Publishers, BostonGoogle Scholar
  8. 8.
    D.P. Seraphim, D.E. Barr, W.T. Chen, G.P. Schmitt, and R.R. Tummala (1997). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part III, 2nd edn. Chapman and Hall, New YorkGoogle Scholar
  9. 9.
    Datta M (2005). In: Datta M, Osaka T, Schultze WJ (eds) Microelectronic packaging, CRC Press, pp 3–27Google Scholar
  10. 10.
    Edelstein DC (1997). Tech Dig IEEE Intl electron devices conference, 773, 1997; IBM Res Mag, No. 4, 16Google Scholar
  11. 11.
    Datta M. In: Krongleb S, Bonhote C, Osaka T, Kitamoto Y (eds) Proceedings, 8th Intl. symposium on magnetic materials processes and devices, Electrochem Soc, NJ, PV2004-23, pp 126–143Google Scholar
  12. 12.
    Basol BM (2004) J Electrochem Soc 151:C765–C771CrossRefGoogle Scholar
  13. 13.
    Hu C, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Domenicucci A, Chen X, Stamper AK (2002) Appl Phys Lett 81:1782–1784CrossRefGoogle Scholar
  14. 14.
    Dubin VM, Lopatin S, Kohn A, Petrov N, Eizenberg M, Shacham-Diamand Y (2004). In: Datta M, Osaka T, Schultze WJ (eds) Microelectronic packaging, CRC Press, pp 65–110Google Scholar
  15. 15.
    Kohn A, Eizenberg M, Shacham-Diamand Y, Israel B, Sverdlor Y (2001) Microelectronic Eng 155:297–303CrossRefGoogle Scholar
  16. 16.
    Nakano H, Itabashi T, Akahoshi H (2005) J Electrochem Soc 152(3):C163–C166CrossRefGoogle Scholar
  17. 17.
    Moon P, Dubin V, Johnston S, Leu J, Raol K, Wu C (2003). Proc IEDM, IEEE Intl, pp 35.1.1–35.1.4Google Scholar
  18. 18.
    Hu C, Gignac L, Liniger E, Herst B, Rath DL, Chen ST, Kaldor S, Simon A, Wang W-T (2003) Appl Phys Lett 83:869CrossRefGoogle Scholar
  19. 19.
    Lee B, Ivanov I (2009). In: Shacham-Diamand Y, Osaka T, Datta M, Ohba T (eds) (2009) Advanced nanoscale ULSI interconnects: fundamentals and applications, SpringerGoogle Scholar
  20. 20.
    Datta M (2004). In: Datta M, Osaka T, Schultze WJ (eds) Microelectronic packaging, CRC Press, pp 167–200Google Scholar
  21. 21.
    Datta M, Shenoy RV, Jahnes C, Andricacos PC, Horkans J, Dukovic JO, Romankiw LT, Roeder J, Deligianni H, Nye H, Agarwala B, Tong HM, Totta PA (1995) J Electrochem Soc 142:3779CrossRefGoogle Scholar
  22. 22.
    Gruber PA, Belanger L, Brouillete GP, Danovitch DH, Landreville JL, Naugle DT, Oberson VA, Shi DY, Tessler CL, Turgeon MR (2005) IBM J Res Dev 49(4/5):621CrossRefGoogle Scholar
  23. 23.
    Gruber PA, Budd RA, Buchwalter SL, Shi DY, Busby JA, Grant JJ, Giri AP, Knickerbocker SH, Longworth HP, Naugle DT. Abstract #1634, 120th ECS meeting, Oct. 29–Nov. 3, 2006, Cancun, MexicoGoogle Scholar
  24. 24.
    Datta M, Emory D, Huang T-L, Joshi SM, King CA, Ma Z, Marieb T, McKeag M, Suh D, Yang S. US Patent No. 6,740,427, May 25, 2004Google Scholar
  25. 25.
    Datta M, Emory D, Joshi S, Menezes S, Suh D. US patent no. 6,853,076, February 8, 2005Google Scholar
  26. 26.
    Moon P, Zhiyong Ma, Datta M. US patent no. 6,703,069, March 9, 2004Google Scholar
  27. 27.
    Pecht MG, Nguyen LT (1999). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part II, 2nd edn. Kluwer Academic Publishers, BostonGoogle Scholar
  28. 28.
    Breedis JT (1986). J Metals AIME 48Google Scholar
  29. 29.
    Van Tiburg GC (1984) Plat Surf Finish 71(6):78Google Scholar
  30. 30.
    Houma H, Mizushima S (1984) Met Finish 82(1):47Google Scholar
  31. 31.
    Schelling PK, Shi L, Goodson KE (2005). Materials Today, 30–35Google Scholar
  32. 32.
    Parasher RS, Chang J-Y, Sauciuc I, Narasimhan S, Chou D, Chrysler G, Myers A, Prstic S, Hu C (2005). Intel Technol J 9(04)Google Scholar
  33. 33.
    Datta, M, Lin E, Choi H, McMaster M, Brewer R, Werner D, Hom J, Upadhya G, Gopalakrishnan S, Rebarber F (2007). Transactions of the Electrochemical Society, 6(8): 13–31Google Scholar
  34. 34.
    Brewer R, Upadhaya G, Zhou P, McMaster M, Tsao P. US patent # 7,188,662, March 13, 2007Google Scholar
  35. 35.
    Wei BQ, Vajtai R, Ajayan PM (2001) Appl Phys Lett 79(8):1172–1174CrossRefGoogle Scholar
  36. 36.
    Collins PG, Hersam M, Arnold M, Martel R, Avouris Ph (2001) Phys Review Lett 86(14):3128–3131CrossRefGoogle Scholar
  37. 37.
    Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Lieban M, Unger E, Honlein W (2002) Microelectronic Eng 64:399–408CrossRefGoogle Scholar
  38. 38.
    Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Appl Phys Lett 82(15):2491–2493CrossRefGoogle Scholar
  39. 39.
    Ngo Q, Cruden BA, Casselle AM, Sims G, Meyyappan M, Li J, Yang CY (2004) Nano Lett 4(12):2403–2407CrossRefGoogle Scholar
  40. 40.
    Arai S, Endo M (2004) Electrochem Solid State Lett 7(3):C25–C26CrossRefGoogle Scholar
  41. 41.
    Dubin VM (1992) J Electrochem Soc 139:633CrossRefGoogle Scholar
  42. 42.
    Li J, You S, O’Keefe MJ, O’Keefe TJ (2006) J Elecrochem Soc 153(10):C722–C727CrossRefGoogle Scholar
  43. 43.
    Lee H-Y, Duh J-G (2006) J Electronic Met 35(3):494–503CrossRefGoogle Scholar
  44. 44.
    Shen J, Liu YC, Han YJ, Gao HX (2006) J Electronic Metals 33(8):1672–1679CrossRefGoogle Scholar
  45. 45.
    Xu J, Fisher TS (2006) Int J Heat Mass Transf 49:1658–1666CrossRefGoogle Scholar
  46. 46.
    Eastman JA, Choi SVS, Li S, Yu W, Thompson LJ (2001) Appl Phys Lett 78(6):718–720CrossRefGoogle Scholar
  47. 47.
    Xuan Y, Li Q (2000) Int J Heat Fluid Flow 21:58–64CrossRefGoogle Scholar
  48. 48.
    Marquis FDS, Chibante LPF (2005). JOM 57(12):32–43Google Scholar
  49. 49.
    Butler P (2006) The packaging professional. 6–7Google Scholar
  50. 50.
    Tuckerman DB, Pease RFW (1981) IEEE Electron Dev Lett 2(5):126–129CrossRefGoogle Scholar
  51. 51.
    Kandilkar SG, Grande WJ (2003) Heat Transf Eng 24(1):3–17CrossRefGoogle Scholar
  52. 52.
    Marthinuss J, Hall G (2004). Electronics CoolingGoogle Scholar
  53. 53.
    Park JW, Ruch D, Wirtz RA. American Association of Aeronautics and Astronautics, AIAA, 2002-0208, 1–9Google Scholar
  54. 54.
    Datta M, McMaster M, Brewer R, Zhou P, Tsao P, Upadhaya G, Munch M. Patent pendingGoogle Scholar
  55. 55.
    Boomsa K, Poulikakos D, Zwick F (2003) Mech Mater 35:1161–1176CrossRefGoogle Scholar
  56. 56.
    Shin H-C, Dong J, Liu M (2003) Adv Mater 15(19):1610–1614CrossRefGoogle Scholar
  57. 57.
    Furberg R (2006) Enhanced boiling heat transfer from a novel nano-dendritic microporous copper structure, licentiate thesis, KTH School of Industrial Engineering & Management, Department of Energy Technology, StockholmGoogle Scholar
  58. 58.
    Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, LondonCrossRefGoogle Scholar
  59. 59.
    Yim WM, Rosi FD (1972) J Solid State Electron 15:1131–1140Google Scholar
  60. 60.
    Yoo BY, Huang C-K, Lim JR, Herman J, Ryan MA, Fleurial J-P, Myung NV (2005) Electrochim Acta 50:4371–4377CrossRefGoogle Scholar
  61. 61.
    Hicks LD, Drwsselhaus MS (1997) Phys Rev B47:631Google Scholar
  62. 62.
    Huang L, Wang W, Murphy MC (1999) Microsystem Technol 6:1–5CrossRefGoogle Scholar
  63. 63.
    Li L, Yang Y, Huang X, Li G, Zhang L (2006) Nanotechnology 17:1706–1712CrossRefGoogle Scholar
  64. 64.
    Sander MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Adv Mater 14(9):665–667CrossRefGoogle Scholar
  65. 65.
    Purkyastha A, Lupo F, Kim S, Borca-Tasciuc T, Ramnath G (2006) Adv Mater Des 18:496–500CrossRefGoogle Scholar
  66. 66.
    Menke EJ, Li Q, Penner RM (2004) Nano Lett 4(10):2009–2014CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Cooligy Precision Cooling, Emerson Network PowerMountain ViewUSA

Personalised recommendations