Electrochemically Fabricated Microelectromechanical Systems/Nanoelectromechanical Systems (MEMS/NEMS)

  • Carlos M. Hangarter
  • Thomas George
  • Nosang V. Myung
Part of the Nanostructure Science and Technology book series (NST)


Microelectromechanical Systems (MEMS) [1] and its more recent extension Nanoelectromechanical Systems (NEMS) [2] are successful offshoots of the semiconductor revolution, which was the hallmark of the latter half of the previous ­century [3]. Both MEMS and NEMS have established themselves as successful fields of endeavor in their own right. In fact, it is fair to say that all nonintegrated circuit (IC) technologies are included under the MEMS/NEMS umbrella. Although the vast majority of MEMS/NEMS technologies deal with the design and fabrication of novel sensors and actuators [3], ancillary technologies such as interconnects and packaging form an important part of MEMS and NEMS [4]. In many cases, MEMS/NEMS also find applications, not as stand-alone devices but as the key enabling subcomponents of otherwise conventionally fabricated systems [2]. This chapter will provide a survey of MEMS/NEMS fabrication and device technologies with particular emphasis on electrochemistry- based fabrication techniques and novel devices/instruments technologies that can be developed using electrochemistry.


Nanowire Array Electron Beam Lithography Highly Orient Pyrolytic Graphite Electrochemical Etching Electrochemical Micromachining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mehragany M (1993) Microelectromechanical systems. IEEE Cuicuits Dev 8755–3996:14–22CrossRefGoogle Scholar
  2. 2.
    Craighead HG (2000) Nanoelectromechanical systems. Science 290:1532–1535CrossRefGoogle Scholar
  3. 3.
    Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and application. Smart Mater Struct 10:1115–1134CrossRefGoogle Scholar
  4. 4.
    Shacham-Diamand Y, Sverdlov Y (2000) Electrochemically deposited thin film alloys for ULSI and MEMS applications. Microelectron Eng 50:525–531CrossRefGoogle Scholar
  5. 5.
    Peeters E (1997) Challenges in commercializing MEMS. IEEE Comput Sci Eng 4:44–48CrossRefGoogle Scholar
  6. 6.
    Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45:2535–2558CrossRefGoogle Scholar
  7. 7.
    Osaka T (2000) Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim Acta 45:3311–3321CrossRefGoogle Scholar
  8. 8.
    Vereecken PM, Binstead RA, Delgianni H, Andricacos PC (2005) The chemistry of additives in damascene copper plating. IBM J Res Dev 49:3–18CrossRefGoogle Scholar
  9. 9.
    Moffat TP, Wheeler D, Edelstein MD, Josell D (2005) Superconformal film growth: mechanism and quantification. IBM J Res Dev 49:19–36CrossRefGoogle Scholar
  10. 10.
    Myung NV, Park DY, Yoo BY, Sumodjo PTA (2003) Development of electroplated magnetic materials for MEMS. J Magn Magn Mater 265:189–198CrossRefGoogle Scholar
  11. 11.
    Andricacos PC, Robertson N (1998) Future directions in electroplated materials for thin-film recording heads. IBM J Res Dev 42:671–680CrossRefGoogle Scholar
  12. 12.
    Guan S, Nelson BJ (2005) Electrodeposition o f low residual stress CoNiMnP hard magnetic thin films for magnetic MEMs actuators. J Magn Magn Mater 292:49–58CrossRefGoogle Scholar
  13. 13.
    Agarwala R, Agarwala V (2003) Electroles alloy/composite coatings: a review. Sadhana 28:475–493CrossRefGoogle Scholar
  14. 14.
    Gawrilov GG (1979) Chemical (electroless) nickel plating, 1st edn. Portcullis Press Limited, RedhillGoogle Scholar
  15. 15.
    Khoperia TN, Tabatadze TJ, Zedgenidze TI (1997) Formation of microcircuits in microelectronics by electroless deposition. Electrochim Acta 42:3049–3055CrossRefGoogle Scholar
  16. 16.
    Chen CJ, Lin KL (2000) Internal stress and adhesion of amorphous Ni–Cu–P alloy on aluminum. Thin Solid Films 370:106–113CrossRefGoogle Scholar
  17. 17.
    Hsu JC, Lin KL (2003) Enhancement in the deposition behavior and deposit properties of electroless Ni–Cu–P. J Electrochem Soc 150:C653–C656CrossRefGoogle Scholar
  18. 18.
    Osaka T (2004) Creation of highly functional thin films using electrochemical nanotechnology. Chem Rec 4:346–362CrossRefGoogle Scholar
  19. 19.
    Shacham-Diamand Y, Inberg A, Sverdlov Y, Bogush V, Croitoru N, Moscovich H, Freeman A (2003) Electroless processes for micro- and nanoelectronics. Electrochim Acta 48:2987–2996CrossRefGoogle Scholar
  20. 20.
    Sun L, Chien C-L, Searson PC (2004) Fabrication of nanoporous nickel by electrochemical dealloying. Chem Mater 16:3125–3129CrossRefGoogle Scholar
  21. 21.
    Guell AG, Diez-Perez I, Gorostiza P, Sanz F (2004) Preparation of reliable probes for electrochemical tunneling spectroscopy. Anal Chem 76:5218–5222CrossRefGoogle Scholar
  22. 22.
    West AC, Deligianni H, Andricacos PC (2005) Electrochemical planarization of interconnect metallization. IBM J Res Dev 49:37–48CrossRefGoogle Scholar
  23. 23.
    Datta M (1995) Fabrication of an array of precision nozzles by through-mask electrochemical micromachining. J Electrochem Soc 142:3801–3805CrossRefGoogle Scholar
  24. 24.
    Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289:98–101CrossRefGoogle Scholar
  25. 25.
    Shaw KA, Zhang ZL, MacDonald NC (1994) SCREAM I: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures. Sens Actuators 40:63–70CrossRefGoogle Scholar
  26. 26.
    Guckel H (1998) High-aspect-ratio micromachining via deep x-ray lithography. Proc IEEE 86:1586CrossRefGoogle Scholar
  27. 27.
    Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC Press LLC, Boca RatonGoogle Scholar
  28. 28.
    Griffiths SK (2004) Fundamental limitations of LIGA x-ray lithography: sidewall onset, slope and minimum feature size. J Micromech Microeng 14:999–1011CrossRefGoogle Scholar
  29. 29.
    Griffiths SK, Crowell JA, Kistler BL, Dryden AS (2004) Dimensional errors in LIGA-produced metal structures due to thermal expansion and swelling of PMMA. J Micromech Microeng 14:1548–1557CrossRefGoogle Scholar
  30. 30.
    Goods SH, Kelly JJ, Yang NYC (2004) Electrodeposited nickel-manganese: an alloy for microsystem applications. Microsyst Technol Micro Nanosyst Inf Storage Process Syst 10:498–505Google Scholar
  31. 31.
    Kelly JJ, Goods SH, Yang NYC (2003) High performance nanostructured Ni–Mn alloy for microsystem applications. Electrochem Solid State Lett 6:C88–C91CrossRefGoogle Scholar
  32. 32.
    Marquis EA, Talin AA, Kelly JJ, Goods SH, Michael JR (2006) Effects of current density on the structure of Ni and Ni–Mn electrodeposits. J Appl Electrochem 36:669–676CrossRefGoogle Scholar
  33. 33.
    Yang JM, Zhu D, Qu NS, Lei WN (2004) Pulse electroforming of nanocrystalline Ni–Mn alloy. Adv Grinding Abrasive Process 259–2:596–601Google Scholar
  34. 34.
    Cohen A, Zhang G, Tseng F-G, Frodis U, Mansfeld F, Will F (1999) EFAB: rapid, low-cost desktop micromachining of high aspect ratio True 3-D MEMS. In: Twelfth IEEE international conference on micro electro mechanical systems, 1999. MEMS ‘99, pp 244–251Google Scholar
  35. 35.
    Chen R (2004) Micro-Fabrication Techniques. Wireless Des Develop 16–20Google Scholar
  36. 36.
    Malek CK, Saile V (2004) Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review. Microelectronics J 35:131–143CrossRefGoogle Scholar
  37. 37.
    Alper SE, Ocak IE, Akin T (2006) Ultra-thick and high-aspect-ratio nickel microgyroscope using EFABTM multi-layer additive electroforming. In: 19th IEEE international conference on micro electro mechanical systems, 2006. MEMS 2006 Istanbul, pp 670–673Google Scholar
  38. 38.
    Microfabrica (2004) Going beyond silicon MEMS with EFAB technology. pp 1–14Google Scholar
  39. 39.
    Yun M, Myung NV, Vasquez RP, Lee C, Menke E, Penner RM (2004) Electrochemically grown wires for individually addressable sensor arrays. Nano Lett 4:419–422CrossRefGoogle Scholar
  40. 40.
    Ramanathan K, Bangar MA, Chen MYW, Mulchandani A, Myung NV (2004) Individually addressable conducting polymer nanowires array. Nano Lett 4:1237–1239CrossRefGoogle Scholar
  41. 41.
    Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Penner RM, Yun M (2006) Investigation of a single Pd nanowire fo use as a hydrogen sensor. Small 2:356–358CrossRefGoogle Scholar
  42. 42.
    Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J Am Chem Soc 127:496–497CrossRefGoogle Scholar
  43. 43.
    Peng C-Y, Kalkan AK, Fonash SJ, Bu B, Sen A (2005) A “Grow-in-Place” architecture and methodology for electrochemical synthesis of conducting polymer nanoribbon device arrays. Nano Lett 5:439–444CrossRefGoogle Scholar
  44. 44.
    Brumlik CJ, Martin CR (1991) Template synthesis of metal microtubules. J Am Chem Soc 113:3174–3175CrossRefGoogle Scholar
  45. 45.
    Martin CR (1995) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRefGoogle Scholar
  46. 46.
    Martin CR (1995) Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res 28:61–68CrossRefGoogle Scholar
  47. 47.
    He H, Tao NJ (2003) Electrochemical fabrication of metal nanowires. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol X. American Scientific Publishers, pp 1–18Google Scholar
  48. 48.
    Kovtyukhova NI, Martin BR, Mbindyo JKN, Mallouk TE, Cabassi M, Mayer TS (2002) Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Mater Sci Eng C 19:255–262CrossRefGoogle Scholar
  49. 49.
    Kovtyukhova NI, Martin BR, Mbindyo JKN, Smith PA, Razavi B, Mayer TS, Mallouk TE (2001) Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J Phys Chem B 105:8762–8769CrossRefGoogle Scholar
  50. 50.
    Xu X, Chen L, Wang C, Yao Q, Feng C (2005) Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires. J Solid State Chem 178:2163–2166CrossRefGoogle Scholar
  51. 51.
    Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem 78:317–320CrossRefGoogle Scholar
  52. 52.
    Li Y, Yin X-F, Chen F-R, Yang H-H, Zhuang Z-X, Wang Z-R (2006) Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template. Macromolecules 39:4497–4499CrossRefGoogle Scholar
  53. 53.
    Park S, Chung SW, Mirkin CA (2004) Hybrid organic-inorganic, rod-shaped nanoresistors and diodes. J Am Chem Soc 126:11772–11773CrossRefGoogle Scholar
  54. 54.
    Kovtyukhova NI, Kelley BK, Mallouk TE (2004) Coaxially gated in-wire thin-film transistors made by template assembly. J Am Chem Soc 126:12738–12739CrossRefGoogle Scholar
  55. 55.
    Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419CrossRefGoogle Scholar
  56. 56.
    Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A 70:365–376CrossRefGoogle Scholar
  57. 57.
    Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gosele U (2002) Self-ordering regimes of porous alumina: the 10% porosity rule. Nano Lett 2:677–680CrossRefGoogle Scholar
  58. 58.
    Xu T, Zangari G, Metzger RM (2002) Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier layer in hexagonally ordered nanoporous alumina. Nano Lett 2:37–41CrossRefGoogle Scholar
  59. 59.
    Masuda H, Hasegwa F, Ono S (1997) Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 144:L127–L130CrossRefGoogle Scholar
  60. 60.
    Masuda H, Satoh M (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35:L126–L129CrossRefGoogle Scholar
  61. 61.
    Masuda H, Yamada J, Satoh M, Asoh J (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772CrossRefGoogle Scholar
  62. 62.
    Yoo BY, Hendricks RK, Ozkan M, Myung NV (2006) Three-dimensional alumina nanotemplate. Electrochim Acta 51:3543–3550CrossRefGoogle Scholar
  63. 63.
    Jee SE, Lee PS, Yoon B-J, Jeong S-H, Lee K-H (2005) Fabrication of microstructures by wet etching of anodic aluminum oxide substrates. Chem Mater 17:4049–4052CrossRefGoogle Scholar
  64. 64.
    Cojocaru CS, Padovani JM, Wade T, Mandoli C, Jaskierowicz G, Wegrowe JE, AFi M, Pribat D (2005) Conformal anodic oxidation of aluminum thin films. Nano Lett 5:675–680CrossRefGoogle Scholar
  65. 65.
    Chien CL, Sun L, Tanase M, Bauer LA, Hultgren A, Silevitch DM, Meyer GJ, Searson PC, Reich DH (2002) Electrodeposited magnetic nanowires: arrays, field-induced assembly, and surface functionalization. J Magn Magn Mater 249:146–155CrossRefGoogle Scholar
  66. 66.
    Sun L, Searson PC, Chien CL (1999) Electrochemical deposition of nickel nanowire arrays in single-crystal mica films. Appl Phys Lett 74:2803–2805CrossRefGoogle Scholar
  67. 67.
    Schonenberger C, vanderzande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505CrossRefGoogle Scholar
  68. 68.
    Williams WD, Giordano N (1984) Fabrication of 80-a metal wires. Rev Sci Instrum 55:410–412CrossRefGoogle Scholar
  69. 69.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  70. 70.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker J (1999) Aerosol-assisted self-assembly of mesostructured sphereical nanoparticles. Nature 398:223–226CrossRefGoogle Scholar
  71. 71.
    Lu Y, Gangull R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 389:364–368CrossRefGoogle Scholar
  72. 72.
    Lu Y, Yang H, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410:913–917CrossRefGoogle Scholar
  73. 73.
    Wang D, Luo H, Kou R, Gil MP, Xiao S, Golub VO, Yang Z, Brinker CJ, Lu Y (2004) A general route to macroscopic hierarchical 3D nanowire networks. Angew Chem Int Ed 43:6169–6173CrossRefGoogle Scholar
  74. 74.
    Wang D, Zhou WL, McCaughy BF, Hampsey JE, Ji Z, Jiang Y-B, HuifangXu TJ, Schmehl RH, O’Connor C, Brinker CJ, Lu Y (2003) Electrodeposition of metallic nanowire thin films using mesoporous silica templates. Adv Mater 15:130–133CrossRefGoogle Scholar
  75. 75.
    Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP (1996) Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931–933CrossRefGoogle Scholar
  76. 76.
    Xu T, Hawker CJ, Russell TP (2005) Interfacial interaction dependence of microdomain orientation in diblock copolymer thin films. Macromolecules 38:2802–2805CrossRefGoogle Scholar
  77. 77.
    Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424:411–414CrossRefGoogle Scholar
  78. 78.
    Xu T, Zvelindovsky AV, Sevink GJA, Lyakhova KS, Jinnai H, Russell TP (2005) Electric field alignment of asymmetric diblock copolymer thin films. Macromolecules 38:10788–10798CrossRefGoogle Scholar
  79. 79.
    Xu T, Goldbach JT, Leiston-Belanger J, Russell TP (2004) Effect of ionic impurities on the electric field alignment of diblock copolymer thin films. Colloid Polym Sci 282:927–931CrossRefGoogle Scholar
  80. 80.
    Thurn-Albrecht T, Schotter J, Kastle GA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290:2126–2129CrossRefGoogle Scholar
  81. 81.
    Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738CrossRefGoogle Scholar
  82. 82.
    Allred DB, Sarikaya M, Baneyx F, Schwartz DT (2005) Electrochemical nanofabrication using crystalline protein masks. Nano Lett 5:609–613CrossRefGoogle Scholar
  83. 83.
    Dai HX, Choe WS, Thai CK, Sarikaya M, Traxler BA, Baneyx F, Schwartz DT (2005) Nonequilibrium synthesis and assembly of hybrid inorganic-protein nanostructures using an engineered DNA binding protein. J Am Chem Soc 127:15637–15643CrossRefGoogle Scholar
  84. 84.
    Dai HX, Thai CK, Sarikaya M, Baneyx F, Schwartz DT (2004) Through-mask anodic patterning of copper surfaces and film stability in biological media. Langmuir 20:3483–3486CrossRefGoogle Scholar
  85. 85.
    Thai CK, Dai HX, Sastry MSR, Sarikaya M, Schwartz DT, Baneyx F (2004) Identification and characterization of Cu2O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnol Bioeng 87:129–137CrossRefGoogle Scholar
  86. 86.
    Li QG, Penner RM (2005) Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. Nano Lett 5:1720–1725CrossRefGoogle Scholar
  87. 87.
    Menke EJ, Li Q, Penner RM (2004) Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Nano Lett 4:2009–2014CrossRefGoogle Scholar
  88. 88.
    Walter EC, Murray BJ, Favier F, Kaltenpoth G, Grunze M, Penner RM (2002) Noble and coinage metal nanowires by electrochemical step edge decoration. J Phys Chem B 106:11407–11411CrossRefGoogle Scholar
  89. 89.
    Walter EC, Murray BJ, Favier F, Penner RM (2003) “Beaded” bimetallic nanowires: wiring nanoparticles of metal 1 using nanowires of metal 2. Adv Mater 15:396–399CrossRefGoogle Scholar
  90. 90.
    Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290:2120–2123CrossRefGoogle Scholar
  91. 91.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841Google Scholar
  92. 92.
    Fan YW, Goldsmith BR, Collins PG (2005) Identifying and counting point defects in carbon nanotubes. Nat Mater 4:906–911CrossRefGoogle Scholar
  93. 93.
    Walter EC, Zach MP, Favier F, Murray BJ, Inazu K, Hemminger JC, Penner RM (2003) Metal nanowire arrays by electrodeposition. Chemphyschem 4:131–138CrossRefGoogle Scholar
  94. 94.
    Zach MP, Inazu K, Ng KH, Hemminger JC, Penner RM (2002) Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration. Chem Mater 14:3206–3216CrossRefGoogle Scholar
  95. 95.
    Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227–2231CrossRefGoogle Scholar
  96. 96.
    Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410CrossRefGoogle Scholar
  97. 97.
    Chen XH, Chen CS, Xiao HN, Liu HB, Zhou LP, Li SL, Zhang G (2006) Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribol Int 39:22–28CrossRefGoogle Scholar
  98. 98.
    Kong J, Chapline MG, Dai HJ (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386CrossRefGoogle Scholar
  99. 99.
    Day TM, Unwin PR, Wilson NR, Macpherson JV (2005) Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J Am Chem Soc 127:10639–10647CrossRefGoogle Scholar
  100. 100.
    Huang JX, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855CrossRefGoogle Scholar
  101. 101.
    Huang JX, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315CrossRefGoogle Scholar
  102. 102.
    Liang L, Liu J, Windisch CF, Exarhos GJ, Lin YH (2002) Direct assembly of large arrays of oriented conducting polymer nanowires. Angew Chem Int Ed 41:3665–3668CrossRefGoogle Scholar
  103. 103.
    Wang J, Chan S, Carlson RR, Luo Y, Ge GL, Ries RS, Heath JR, Tseng HR (2004) Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett 4:1693–1697CrossRefGoogle Scholar
  104. 104.
    Alam MM, Wang J, Guo YY, Lee SP, Tseng HR (2005) Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J Phys Chem B 109:12777–12784CrossRefGoogle Scholar
  105. 105.
    Jin S, Whang DM, McAlpine MC, Friedman RS, Wu Y, Lieber CM (2004) Scalable interconnection and integration of nanowire devices without registration. Nano Lett 4:915–919CrossRefGoogle Scholar
  106. 106.
    Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233CrossRefGoogle Scholar
  107. 107.
    Whang D, Jin S, Lieber CM (2003) Nanolithography using hierarchically assembled nanowire masks. Nano Lett 3:951–954CrossRefGoogle Scholar
  108. 108.
    Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255–1259CrossRefGoogle Scholar
  109. 109.
    Yang PD, Kim F (2002) Langmuir-Blodgett assembly of one-dimensional nanostructures. Chemphyschem 3:503–506CrossRefGoogle Scholar
  110. 110.
    Tanase M, Bauer LA, Hultgren A, Silevitch DM, Sun L, Reich DH, Searson PC, Meyer GJ (2001) Magnetic alignment of fluorescent nanowires. Nano Lett 1:155–158CrossRefGoogle Scholar
  111. 111.
    Tanase M, Silevitch DM, Hultgren A, Bauer LA, Searson PC, Meyer GJ, Reich DH (2002) Magnetic trapping and self-assembly of multicomponent nanowires. J Appl Phys 91:8549–8551CrossRefGoogle Scholar
  112. 112.
    Bentley AK, Trethewey JS, Ellis AB, Crone WC (2004) Magnetic manipulation of copper-tin nanowires capped with nickel ends. Nano Lett 4:487–490CrossRefGoogle Scholar
  113. 113.
    Hangarter CM, Myung NV (2005) Magnetic alignment of nanowires. Chem Mater 17:1320–1324CrossRefGoogle Scholar
  114. 114.
    Yoo B, Rheem Y, Beyermann WP, Myung NV (2006) Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrodes. Nanotechnology 17:2512–2517CrossRefGoogle Scholar
  115. 115.
    Niyogi S, Hangarter C, Thamankar RM, Chiang YF, Kawakami R, Myung NV, Haddon RC (2004) Magnetically assembled multiwalled carbon nanotubes on ferromagnetic contacts. J Phys Chem B 108:19818–19824CrossRefGoogle Scholar
  116. 116.
    Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69CrossRefGoogle Scholar
  117. 117.
    Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401CrossRefGoogle Scholar
  118. 118.
    Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36CrossRefGoogle Scholar
  119. 119.
    Dong LF, Bush J, Chirayos V, Solanki R, Jiao J (2005) Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett 5:2112–2115CrossRefGoogle Scholar
  120. 120.
    Edwards B, Mayer TS, Bhiladvala RB (2006) Synchronous electrorotation of nanowires in fluid. Nano Lett 6:626–632CrossRefGoogle Scholar
  121. 121.
    Fan DL, Zhu FQ, Cammarata RC, Chien CL (2005) Controllable high-speed rotation of nanowires. Phys Rev Lett 94:247208CrossRefGoogle Scholar
  122. 122.
    George T, Madsen L, Tang W, Chang-Chien A, Leskowitz G, Weitekamp D (2001) MEMS-based force-detected nuclear magnetic resonance spectrometer for in situ planetary exploration. In: IEEE, pp 273–278Google Scholar
  123. 123.
    Leskowitz GM, Madsen LA, Weitekamp DP (1998) Force-detected magnetic resonance without field gradients. Solid State Nucl Magn Reson 11:73–86CrossRefGoogle Scholar
  124. 124.
    Xu BQ, Tao NJJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223CrossRefGoogle Scholar
  125. 125.
    Chen F, Qing Q, Ren L, Wu ZY, Liu ZF (2005) Electrochemical approach for fabricating nanogap electrodes with well controllable separation. Appl Phys Lett 86:123105CrossRefGoogle Scholar
  126. 126.
    Li CZ, He HX, Tao NJ (2000) Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching. Appl Phys Lett 77:3995–3997CrossRefGoogle Scholar
  127. 127.
    Li CZ, Tao NJ (1998) Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution. Appl Phys Lett 72:894–896CrossRefGoogle Scholar
  128. 128.
    Liu B, Xiang J, Tian JH, Zhong C, Mao BW, Yang FZ, Chen ZB, Wu ST, Tian ZQ (2005) Controllable nanogap fabrication on microchip by chronopotentiometry. Electrochim Acta 50:3041–3047CrossRefGoogle Scholar
  129. 129.
    Qing Q, Chen F, Li PG, Tang WH, Wu ZY, Liu ZF (2005) Finely tuning metallic nanogap size with electrodeposition by utilizing high-frequency impedance in feedback. Angew Chem Int Ed 44:7771–7775CrossRefGoogle Scholar
  130. 130.
    Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141CrossRefGoogle Scholar
  131. 131.
    Goolaup S, Singh N, Adeyeye AO, Ng V, Jalil MBA (2005) Transition from coherent rotation to curling mode reversal process in ferromagnetic nanowires. Eur Phys J B 44:259–264CrossRefGoogle Scholar
  132. 132.
    Hao Z, Shaoguang Y, Gang N, Dongliang Y, Youwei D (2001) Study on magnetic property of Fe14Ni86 alloy nanowire array. J Magn Magn Mater 234:454–458CrossRefGoogle Scholar
  133. 133.
    Lederman M, O’Barr R, Schultz S (1995) Experimental study of individual ferromagnetic sub-micron cylinders. IEEE Trans Magn 31:3793–3795CrossRefGoogle Scholar
  134. 134.
    Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71 :064411(7 pages)Google Scholar
  135. 135.
    Martin JI, Velez M, Alameda JM, Briones F, Vicent JL (2002) Magnetotransport properties of patterned magnetic Ni wires of submicrometric dimensions. J Magn Magn Mater 240:14–16CrossRefGoogle Scholar
  136. 136.
    Navas D, Asenjo A, Jaafar M, Pirota KR, Hernandez-Velez M, Sanz R, Lee W, Niesch K, Batallan F, Vazquez M (2005) Magnetic behavior of NixFe(100-x) (65 <= x <= 100) nanowire arrays. J Magn Magn Mater 290:191–194CrossRefGoogle Scholar
  137. 137.
    OBarr R, Schultz S (1997) Switching field studies of individual single domain Ni columns. J Appl Phys 81:5458–5460CrossRefGoogle Scholar
  138. 138.
    Ohgai T, Gravier L, Hoffer X, Lindeberg M, Hjort K, Spohr R, Ansermet J-P (2003) Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios. J Phys D Appl Phys 36:3109–3114CrossRefGoogle Scholar
  139. 139.
    Perez-Junquera A, Martin JI, Velez M, Alameda JM, Vicent JL (2003) Temperature dependence of the magnetization reversal process in patterned Ni nanowires. Nanotechnology 14:294–298CrossRefGoogle Scholar
  140. 140.
    Pignard S, Goglio G, Radulescu A, Piraux L, Dubois S, Declemy A, Duvail JL (2000) Study of the magnetization reversal in individual nickel nanowires. J Appl Phys 87:824–829CrossRefGoogle Scholar
  141. 141.
    Wegrowe JE, Gilbert SE, Kelly D, Doudin B, Ansermet JP (1998) Anisotropic magnetoresistance as a probe of magnetization reversal in individual nano-sized nickel wires. IEEE Trans Magn 34:903–905CrossRefGoogle Scholar
  142. 142.
    Wegrowe JE, Kelly D, Franck A, Gilbert SE, Ansermet JP (1999) Magnetoresistance of ferromagnetic nanowires. Phys Rev Lett 82:3681–3684CrossRefGoogle Scholar
  143. 143.
    Wernsdorfer W, Doudin B, Mailly D, Hasselbach K, Benoit A, Meier J, Ansermet JP, Barbara B (1996) Nucleation of magnetization reversal in individual nanosized nickel wires. Phys Rev Lett 77:1873–1876CrossRefGoogle Scholar
  144. 144.
    Chen M, Searson PC, Chien CL (2003) Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires. J Appl Phys 93:8253–8255CrossRefGoogle Scholar
  145. 145.
    Dubois S, Marchal C, Beuken JM, Piraux L, Duvail JL, Fert A, George JM, Maurice JL (1997) Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires. Appl Phys Lett 70:396–398CrossRefGoogle Scholar
  146. 146.
    Evans PR, Yi G, Schwarzacher W (2000) Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes. Appl Phys Lett 76:481–483CrossRefGoogle Scholar
  147. 147.
    Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Lett 4:665–670CrossRefGoogle Scholar
  148. 148.
    Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O-2 using tin oxide nanowire sensors. Adv Mater 15:997–1000CrossRefGoogle Scholar
  149. 149.
    Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou CW (2005) Complementary detection of prostate-specific antigen using ln(2)O(3) nanowires and carbon nanotubes. J Am Chem Soc 127:12484–12485CrossRefGoogle Scholar
  150. 150.
    Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18:533–550CrossRefGoogle Scholar
  151. 151.
    Snyder GJ, Lim JR, Huang CK, Fleurial JP (2003) Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat Mater 2:528–531CrossRefGoogle Scholar
  152. 152.
    Hicks LD, Dresselhaus MS (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631–16634CrossRefGoogle Scholar
  153. 153.
    Lim JR, Whitacre JF, Fleurial JP, Huang CK, Ryan MA, Myung NV (2005) Fabrication method for thermoelectric nanodevices. Adv Mater 17:1488–1492CrossRefGoogle Scholar
  154. 154.
    Wang W, Jia FL, Huang QH, Zhang JZ (2005) A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron Eng 77:223–229CrossRefGoogle Scholar
  155. 155.
    Kim SH, Misner MJ, Xu T, Kimura M, Russell TP (2004) Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv Mater 16:226–231CrossRefGoogle Scholar
  156. 156.
    George T (2003) Overview of MEMS/NEMS technology development for space applications at NASA/JPL. SPIE 5116:136–148CrossRefGoogle Scholar
  157. 157.
    Possin GE (1970) A method of forming very small diameter wires. Rev Sci Instrum 41:772–774 Google Scholar
  158. 158.
    Luo, H, Wang D, He J, Lu Y (2005) Magnetic cobalt nanowire thin films. J Phys Chem B 109:1919–1922Google Scholar
  159. 159.
    Klein JD, Herrick RD, Palmer D, Sailor MJ, Brumlik CJ, Martin CR (1993) Electrochemical fabrication of cadmium chalcogenide microdiode arrays. Chem Mater 5:902–904Google Scholar
  160. 160.
    Sima M, Enculescu I, Visan T (2004) The electrodeposition of semiconductor nanowires with thermoelectric properties using “template” method. Revista De Chimie 55:743–746Google Scholar
  161. 161.
    Mukherjee PK, Chakravorty D (2004) Growth of CdS nanowires using Na-4 mica as template. J Appl Phys 95:3164–3169Google Scholar
  162. 162.
    Wang DH, Jakobson HP, Kou R, Tang J, Fineman RZ, Yu DH, Lu YF (2006) Metal and semiconductor nanowire network thin films with hierarchical pore structures. Chem Mater 18:4231–4237Google Scholar
  163. 163.
    Li Y, Meng GW, Zhang LD, Phillipp F (2000) Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. App Phy Lett 76:2011–2013Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carlos M. Hangarter
    • 1
  • Thomas George
    • 2
  • Nosang V. Myung
    • 1
  1. 1.Department of Chemical and Environmental EngineeringUniversity of California-RiversideRiversideUSA
  2. 2.ViaLogy CorporationAltadenaUSA

Personalised recommendations