Electrochemical and Magnetic Technologies for Bio Applications

  • Tadashi Matsunaga
  • Tsuyoshi Tanaka
Part of the Nanostructure Science and Technology book series (NST)


The electrochemical and magnetic biosensors have an advantage because of the easy miniaturization of electric device components as compared with photometric instruments. These technologies have been applied to develop portable, compact and inexpensive biochip devices. A commercially successful example is the glucose sensor using enzyme transducers, which was originally reported by Clark and Lyons [1] to measure glucose by detecting the decrease in oxygen by pO2 electrode when glucose is converted to gluconic acid and hydrogen peroxide. Electrochemical biosensors can be separated into three typical assay systems using amperometric, potentiometric or conductometric transducers. Furthermore, various magnetosensors using magnetic particles have been developed over a decade in place of photometric biosensors. In this chapter, recent advances in electrochemical and magnetic biosensors toward development of portable, compact and inexpensive biochip devices have been focused.


Magnetic Particle Magnetic Probe Ferrocene Moiety Photodetecting Device Ferrocene Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clark LCJ, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45CrossRefGoogle Scholar
  2. 2.
    Vernon SD, Farkas DH, Unger ER et al (2003) Bioelectronic DNA detection of human papillomaviruses using eSensor: a model system for detection of multiple pathogens. BMC Infect Dis 3:12CrossRefGoogle Scholar
  3. 3.
    Yu CJ, Wan Y, Yowanto H et al (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J Am Chem Soc 123:11155–11161CrossRefGoogle Scholar
  4. 4.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137CrossRefGoogle Scholar
  5. 5.
    Umek RM, Lin SW, Vielmetter J et al (2001) Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. J Mol Diagn 3:74–84CrossRefGoogle Scholar
  6. 6.
    Burmeister J, Bazilyanska V, Grothe K et al (2004) Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA. Anal Bioanal Chem 379:391–398CrossRefGoogle Scholar
  7. 7.
    Kara P, Ozkan D, Kerman K et al (2002) DNA sensing on glassy carbon electrodes by using hemin as the electrochemical hybridization label. Anal Bioanal Chem 373:710–716CrossRefGoogle Scholar
  8. 8.
    Wang J, Liu G, Merkoci A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 125:3214–3215CrossRefGoogle Scholar
  9. 9.
    Lim TK, Imai S, Matsunaga T (2002) Miniaturized amperometric flow immunoassay system using a glass fiber membrane modified with anion. Biotechnol Bioeng 77:758–763CrossRefGoogle Scholar
  10. 10.
    Lim TK, Ohta H, Matsunaga T (2003) Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem 75:3316–3321CrossRefGoogle Scholar
  11. 11.
    Wang J, Ibanez A, Chatrathi MP (2002) Microchip-based amperometric immunoassays using redox tracers. Electrophoresis 23:3744–3749CrossRefGoogle Scholar
  12. 12.
    Takenaka S, Yamashita K, Takagi M, Uto Y, Kondo H (2000) DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal Chem 72:1334–1341CrossRefGoogle Scholar
  13. 13.
    Takenaka S, Ohtuka K, Miyahara H, Nojima T, Takagi M (2002) An anthracene derivative carrying ferrocenyl moieties at its 9 and 10 positions as a new electrochemically active threading intercalator. Nucleic Acids Res Suppl; 291–2Google Scholar
  14. 14.
    Wang J, Li J, Baca AJ et al (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945CrossRefGoogle Scholar
  15. 15.
    Degani Y, Heller A (1988) Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. J Am Chem Soc 110:2615–2620CrossRefGoogle Scholar
  16. 16.
    Gleria KD, Hill HA, Mcneil CJ, Green MJ (1986) Homogeneous ferrocene-mediated amperometric immunoassay. Anal Chem 58:1203–1205CrossRefGoogle Scholar
  17. 17.
    Suzawa T, Ikariyama Y, Aizawa M (1994) Multilabeling of ferrocenes to a glucose oxidase-digoxin conjugate for the development of a homogeneous electroenzymatic immunoassay. Anal Chem 66:3889–3894CrossRefGoogle Scholar
  18. 18.
    Okochi M, Ohta H, Tanaka T, Matsunaga T (2005) Electrochemical probe for on-chip type flow immunoassay: immunoglobulin G labeled with ferrocenecarboaldehyde. Biotechnol Bioeng 90:14–19CrossRefGoogle Scholar
  19. 19.
    Mak WC, Cheung KY, Trau D et al (2005) Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. Anal Chem 77:2835–2841CrossRefGoogle Scholar
  20. 20.
    Jenkins DM, Chami B, Kreuzer M et al (2006) Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode. Anal Chem 78:2314–2318CrossRefGoogle Scholar
  21. 21.
    Inouye M, Ikeda R, Takase M, Tsuri T, Chiba J (2005) Single-nucleotide polymorphism detection with “wire-like” DNA probes that display quasi “on-off” digital action. Proc Natl Acad Sci U S A 102:11606–11610CrossRefGoogle Scholar
  22. 22.
    Enpuku K, Minotani T, Gima T et al (1999) Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. Jpn J Appl Phys 38:L1102–L1105CrossRefGoogle Scholar
  23. 23.
    Enpuku K, Minotani T, Hotta M, Nakahodo A (2001) Application of High Tc SQUID magnetometer to biological immunoassays. IEEE Trans on Appl Supercond 11:661–664CrossRefGoogle Scholar
  24. 24.
    Chemla YR, Grossman HL, Poon Y et al (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A 97:14268–14272CrossRefGoogle Scholar
  25. 25.
    Grossman HL, Myers WR, Vreeland VJ et al (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. Proc Natl Acad Sci U S A 101:129–134CrossRefGoogle Scholar
  26. 26.
    Baselt DR, Lee GU, Natesan M, et al (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739Google Scholar
  27. 27.
    Edelstein RL, Tamanaha CR, Sheehan PE et al (2000) The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 14:805–813CrossRefGoogle Scholar
  28. 28.
    Schotter J, Kamp PB, Becker A et al (2004) Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens Bioelectron 19:1149–1156CrossRefGoogle Scholar
  29. 29.
    Megens M, Prins M (2005) Magnetic biochips: a newoption for sensitive diagnostics. J Magn Magn Mater 293:702–708CrossRefGoogle Scholar
  30. 30.
    Graham DL, Ferreira HA, Freitas PP, Cabral JM (2003) High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens Bioelectron 18:483–488CrossRefGoogle Scholar
  31. 31.
    Kriz CB, Rådevik K, Kriz D (1996) Magnetic permeability measurements in bioanalysis and biosensors. Anal Chem 68:1966–1970CrossRefGoogle Scholar
  32. 32.
    Kriz K, Gehrke J, Kriz D (1998) Advancements toward magneto immunoassays. Biosens Bioelectron 13:817–823CrossRefGoogle Scholar
  33. 33.
    Kriz K, Ibraimi F, Lu M, Hansson LO, Kriz D (2005) Detection of C-reactive protein utilizing magnetic permeability detection based immunoassays. Anal Chem 77:5920–5924CrossRefGoogle Scholar
  34. 34.
    Lu M, Ibraimi F, Kriz D, Kriz K (2006) A combination of magnetic permeability detection with nanometer-scaled superparamagnetic tracer and its application for one-step detection of human urinary albumin in undiluted urine. Biosens Bioelectron 21:2248–2254CrossRefGoogle Scholar
  35. 35.
    Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314CrossRefGoogle Scholar
  36. 36.
    Arakaki A, Hideshima S, Nakagawa T et al (2004) Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles. Biotechnol Bioeng 88:543–546CrossRefGoogle Scholar
  37. 37.
    Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655CrossRefGoogle Scholar
  38. 38.
    Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature (London) 365:47–49CrossRefGoogle Scholar
  39. 39.
    Nakamura N, Matsunaga T (1993) Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta 281:585–589CrossRefGoogle Scholar
  40. 40.
    Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem 76:6207–6213CrossRefGoogle Scholar
  41. 41.
    Tanaka T, Matsunaga T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal Chem 72:3518–3522CrossRefGoogle Scholar
  42. 42.
    Matsunaga T, Maeda Y, Yoshino T et al (2007) Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites, ‘Beads on Beads’. Anal Chim Acta 597:331–339CrossRefGoogle Scholar
  43. 43.
    Matsunaga T, Takahashi M, Yoshino T, Kuhara M, Takeyama H (2006) Magnetic separation of CD14+ cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochem Biophys Res Commun 350:1019–1025CrossRefGoogle Scholar
  44. 44.
    Yoshino T, Takahashi M, Takeyama H et al (2004) Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Appl Environ Microbiol 70:2880–2885CrossRefGoogle Scholar
  45. 45.
    Yoshino T, Tanaka T, Takeyama H, Matsunaga T (2003) Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens Bioelectron 18:661–666CrossRefGoogle Scholar
  46. 46.
    Wacker R, Schroder H, Niemeyer CM (2004) Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal Biochem 330:281–287CrossRefGoogle Scholar
  47. 47.
    Saleh OA, Sohn LL (2003) Direct detection of antibody-antigen binding using an on-chip artificial pore. Proc Natl Acad Sci U S A 100:820–824CrossRefGoogle Scholar
  48. 48.
    Sato K, Yamanaka M, Takahashi H et al (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23:734–739CrossRefGoogle Scholar
  49. 49.
    Soo Ko J, Yoon HC, Yang H et al (2003) A polymer-based microfluidic device for immunosensing biochips. Lab Chip 3:106–13CrossRefGoogle Scholar
  50. 50.
    Wu J, Tang J, Dai Z et al (2006) A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron 22:102–108CrossRefGoogle Scholar
  51. 51.
    Zeravik J, Ruzgas T, Franek M (2003) A highly sensitive flow-through amperometric immunosensor based on the Peroxidase chip and enzyme-channeling principle. Biosens Bioelectron 18:1321–1327CrossRefGoogle Scholar
  52. 52.
    Lim TK, Matsunaga T (2001) Construction of electrochemical flow immunoassay system using capillary columns and ferrocene conjugated immunoglobulin G for detection of human chorionic gonadotrophin. Biosens Bioelectron 16:1063–1069CrossRefGoogle Scholar
  53. 53.
    Allen DW, Schroeder WA, Balog J (1958) Observation on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J Am Chem Soc 80:1628–1634CrossRefGoogle Scholar
  54. 54.
    Clegg MD, Schroeder WA (1959) A chromatographic study of the minor components of normal adult haemoglobin including a comparison of haemoglobin from normal and phenylketamine individuals. J Am Chem Soc 81:6065–6069CrossRefGoogle Scholar
  55. 55.
    Schneck AG, Schroeder WA (1961) The relation between the minor components of normal adult haemoglobin sa isolated by chromatography and starch block electrophoresis. J Am Chem Soc 83:1472–1478CrossRefGoogle Scholar
  56. 56.
    Bunn HF, Haney DN, Gabbay KH, Gallop PM (1975) Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun 67:103–109CrossRefGoogle Scholar
  57. 57.
    Hoelzel W, Weykamp C, Jeppsson JO et al (2004) IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin Chem 50:166–174CrossRefGoogle Scholar
  58. 58.
    St John A, Davis TM, Goodall I, Townsend MA, Price CP (2006) Nurse-based evaluation of point-of-care assays for glycated haemoglobin. Clin Chim Acta 365:257–63CrossRefGoogle Scholar
  59. 59.
    Tanaka T, Matsunaga T (2001) Detection of HbA(1c) by boronate affinity immunoassay using bacterial magnetic particles. Biosens Bioelectron 16:1089–1094CrossRefGoogle Scholar
  60. 60.
    Tanaka T, Tsukube S, Izawa K et al (2007) Electrochemical detection of HbA1c, a marker [correction of maker] for diabetes, using a flow immunoassay system. Biosens Bioelectron 22:2051–2056CrossRefGoogle Scholar
  61. 61.
    Boom R, Sol CJ, Salimans MM et al (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503Google Scholar
  62. 62.
    Hawkins TL, O’Connor-Morin T, Roy A, Santillan C (1994) DNA purification and isolation using a solid-phase. Nucleic Acids Res 22:4543–4544CrossRefGoogle Scholar
  63. 63.
    Lis JT (1980) Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods Enzymol 65:347–353CrossRefGoogle Scholar
  64. 64.
    Hawkins TL, Mckernan KJ, Jacotot LB et al (1997) A magnetic attraction to high-throughput genomics. Science 276:1887–1889CrossRefGoogle Scholar
  65. 65.
    Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831CrossRefGoogle Scholar
  66. 66.
    Hayes MA, Polson TN, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73:5896–5902CrossRefGoogle Scholar
  67. 67.
    Zhao W, Yao S, Hsing IM (2006) A microsystem compatible strategy for viable Escherichia coli detection. Biosens Bioelectron 21:1163–1170CrossRefGoogle Scholar
  68. 68.
    Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ (2005) Development of a microfluidic biosensor module for pathogen detection. Lab Chip 5:805–811CrossRefGoogle Scholar
  69. 69.
    Christel LA, Petersen K, Mcmillan W, Northrup MA (1999) Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J Biomech Eng 121:22–27CrossRefGoogle Scholar
  70. 70.
    Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron 19:59–66CrossRefGoogle Scholar
  71. 71.
    Xu Y, Vaidya B, Patel AB et al (2003) Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal Chem 75:2975–2984CrossRefGoogle Scholar
  72. 72.
    Adey NB, Lei M, Howard MT et al (2002) Gains in sensitivity with a device that mixes microarray hybridization solution in a 25-microm-thick chamber. Anal Chem 74:6413–6417CrossRefGoogle Scholar
  73. 73.
    Liu RH, Lenigk R, Druyor-Sanchez RL, Yang J, Grodzinski P (2003) Hybridization enhancement using cavitation microstreaming. Anal Chem 75:1911–1917CrossRefGoogle Scholar
  74. 74.
    Mcquain MK, Seale K, Peek J et al (2004) Chaotic mixer improves microarray hybridization. Anal Biochem 325:215–226CrossRefGoogle Scholar
  75. 75.
    Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94:217–224CrossRefGoogle Scholar
  76. 76.
    Nakagawa T, Hashimoto R, Maruyama K et al (2006) Capture and release of DNA using aminosilane-modified bacterial magnetic particles for automated detection system of single nucleotide polymorphisms. Biotechnol Bioeng 94:862–868CrossRefGoogle Scholar
  77. 77.
    Nakagawa T, Tanaka T, Niwa D et al (2005) Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol 116:105–111CrossRefGoogle Scholar
  78. 78.
    Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) Fully automated DNA extraction from blood using magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biosci Bioeng 95:21–26Google Scholar
  79. 79.
    Yoza B, Arakaki A, Matsunaga T (2003) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228CrossRefGoogle Scholar
  80. 80.
    Voss KJ (2000) Physics of low light level detectors. Methods Enzymol 305:53–61CrossRefGoogle Scholar
  81. 81.
    Kamei T, Paegel BM, Scherer JR et al (2003) Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices. Anal Chem 75:5300–5305CrossRefGoogle Scholar
  82. 82.
    Kamei T, Toriello NM, Lagally ET et al (2005) Microfluidic Genetic Analysis with an Integrated a-Si:H Detector. Biomed Microdevices 7:147–152CrossRefGoogle Scholar
  83. 83.
    Chabinyc ML, Chiu DT, Mcdonald JC et al (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73:4491–4498CrossRefGoogle Scholar
  84. 84.
    Song JM, Culha M, Kasili PM, Griffin GD, Vo-Dinh T (2005) A compact CMOS biochip immunosensor towards the detection of a single bacteria. Biosens Bioelectron 20:2203–2209CrossRefGoogle Scholar
  85. 85.
    Vo-Dinh T, Alarie JP, Isola N et al (1999) DNA biochip using a phototransistor integrated circuit. Anal Chem 71:358–363CrossRefGoogle Scholar
  86. 86.
    Mallard F, Marchand G, Ginot F, Campagnolo R (2005) Opto-electronic DNA chip: high performance chip reading with an all-electric interface. Biosens Bioelectron 20:1813–1820CrossRefGoogle Scholar
  87. 87.
    Ho WJ, Chen JS, Ker MD et al (2007) Fabrication of a miniature CMOS-based optical biosensor. Biosens Bioelectron 22:3008–3013CrossRefGoogle Scholar
  88. 88.
    Lamture JB, Beattie KL, Burke BE et al (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res 22:2121–2125CrossRefGoogle Scholar
  89. 89.
    Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR (2002) Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci U S A 99:14142–14146CrossRefGoogle Scholar
  90. 90.
    Kim DS, Jeong YT, Park HJ et al (2004) An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens Bioelectron 20:69–74CrossRefGoogle Scholar
  91. 91.
    Guiducci C, Stagni C, Zuccheri G et al (2004) DNA detection by integrable electronics. Biosens Bioelectron 19:781–787CrossRefGoogle Scholar
  92. 92.
    Wong ELE, Gooding JJ (2006) Charge transfer through DNA: a selective electrochemical DNA biosensor. Anal Chem 78:2183–2244Google Scholar
  93. 93.
    Zhang Q, Subramanian V (2007) DNA hybridization detection with organic thin film transistors: toward fast and disposable DNA microarray chips. Biosens Bioelectron 22:3182–3187CrossRefGoogle Scholar
  94. 94.
    Tanaka T, Hatakeyama K, Sawaguchi M et al (2006) Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology. Biotechnol Bioeng 95:22–28CrossRefGoogle Scholar
  95. 95.
    Chen WJ, Loh EW, Hsu YP, Cheng AT (1997) Alcohol dehydrogenase and aldehyde dehydrogenase genotypes and alcoholism among Taiwanese aborigines. Biol Psychiatry 41:703–709CrossRefGoogle Scholar
  96. 96.
    Maruyama K, Takeyama H, NEMOTO E et al (2004) Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng 87:687–694CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tadashi Matsunaga
    • 1
  • Tsuyoshi Tanaka
    • 1
  1. 1.Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei-cityJapan

Personalised recommendations