Skip to main content

Translating Primate Locomotor Biomechanical Variables from the Laboratory to the Field

  • Chapter
  • First Online:

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

One of the critical goals of primate evolutionary morphology is to understand the functional anatomy of muscular and osteological features to infer behavior in the fossil record. One of the most productive approaches for testing functional hypotheses is the comparative experimental approach first advocated by Washburn in the early 1950s. Since that time, laboratory-based approaches have provided profound insights into the biomechanics of primate locomotion and helped anthropologists understand important aspects of limb design. However, a lack of connection to naturalistic data collected from the field has limited the full value of these data. This chapter proposes that there are a number of simple variables that can be collected both in the laboratory and the field that reflect important underlying aspects of locomotor biomechanics. These include gait choice, limb phase, and joint yield all of which appear to be associated with joint loading and center of mass movements. Using these measures, this chapter provides a model for the way in which laboratory-based and field-based data may be analyzed to provide a complete perspective on primate locomotion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

COM:

center of mass

DS:

diagonal sequence

KE:

kinetic energy

PE:

potential energy

TE:

total energy

References

  • Ahn AN, Furrow E, Biewener AA (2004) Walking and running in the red-legged running frog, Kasina maculata. J Exp Biol 207:399–410.

    CAS  Google Scholar 

  • Alexander RMcN (1977) Mechanics and scaling of terrestrial locomotion. In: Pedley T (ed), Scale Effects in Animal Locomotion. Academic Press, London, pp 93–110.

    Google Scholar 

  • Alexander R. McN., Jayes AS, Maloiy GMO, Wathuta EM (1979) Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). J Zool (Lond) 194:539–552.

    Article  Google Scholar 

  • Alexander RM, Jayes AS (1978) Vertical movements in walking and running. J Zool Lond 185:27–40.

    Article  Google Scholar 

  • Alexander RMcN, Maloiy GM (1984) Stride lengths and stride frequencies of primates. J Zool Lond 202:577–582.

    Article  Google Scholar 

  • Alexander RMcN, Ker RF (1990) Running is priced by the step. Nature 346:220–221.

    Article  Google Scholar 

  • Alexander RMcN (1992) A model of bipedal locomotion on compliant legs. Philos Trans R Soc Lond B 338:189–198.

    Article  CAS  Google Scholar 

  • Alexander RMcN (2003) Principles of Animal Locomotion. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Barrey E (2001) Inter-limb coordination. In: Back W, Clayton HM (eds), Equine Locomotion. WB Saunders, London. pp 77–94.

    Google Scholar 

  • Baumgartner RE, Wunderlich RE, Schmitt D (2009a) Collisional costs of bipedalism in primates. Am J Phys Anthropol (Suppl) 48:91.

    Google Scholar 

  • Baumgartner RE, Wunderlich RE, Schmitt D (2009b) Collisional mechanics during sifaka bipedalism. Integrative and Comparative Biol 49 (Suppl 1):e-193.

    Google Scholar 

  • Biewener AA (1989) Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (2003) Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. J Exp Zool 305A:899–911.

    Article  Google Scholar 

  • Biknevicius AR, Mullineaux DR, Clayton HM (2003) Taking the walk for a run: locomotor mechanics of lateral sequence singlefoot gaits. Integr Comp Biol 43:988.

    Google Scholar 

  • Biknevicius AR, Mullineaux DR, Clayton HM (2004) Ground reaction forces and limb function in tolting horses. Equine Vet J 36:743–747.

    Google Scholar 

  • Bishop KL, Schmitt D (2008) Evolutionary tradeoffs between stealth and efficiency during walking in cats. PLoS ONE 3(11):e3808.

    Article  PubMed  CAS  Google Scholar 

  • Blickhan R, Full RJ (1987) Locomotion energetics of the ghost crab. II. Mechanics of the centre of mass during walking and running. J Exp Biol 130:155–174.

    Google Scholar 

  • Blickhan R, Full RJ (1992) Mechanical work in terrestrial locomotion. In: Biewener AA (ed), Biomechanics: A Practical Approach. Oxford University Press, New York, pp 75–96.

    Google Scholar 

  • Bock WJ (1977) Adaptation and the comparative method. In: Hecht MK, Goody P, Hecht B (eds), Major Patterns in Vertebrate Evolution. Plenum, New York, pp 57–82.

    Google Scholar 

  • Byron CD, Covert HH (2004) Unexpected locomotor behaviour: brachiation by an Old World monkey (Pygathrix nemaeus) from Vietnam. J Zool 263:101–106.

    Article  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetrical gaits in mammals. Zool J Linn Soc 136:401–420.

    Article  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2007a) Primate gaits and primate origins. In: Dagosto M, Ravosa M (eds), Primate Origins. Kluwer, New York, pp 403–436.

    Chapter  Google Scholar 

  • Cartmill M, Lemelin P, and Schmitt D (2007b). Understanding the adaptive value of diagonal sequence gaits in primates: a comment on Shapiro and Raichlen (2005). Am J Phys Anthropol 133:822–825.

    Article  PubMed  Google Scholar 

  • Cavagna GA, Thys H, Zamboni A (1976) Sources of external work in level walking and running. J Physiol Lond 262:639–657.

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–261.

    PubMed  CAS  Google Scholar 

  • Demes B, Jungers WL, Nieschalk U (1990) Size- and speed-related aspects of quadrupedal walking in slender and slow lorises. In: Jouffroy FK, Stack MH, Niemitz C (eds), Gravity, Posture and Locomotion in Primates. Il Sedicesimo, Florence, pp 175–198.

    Google Scholar 

  • Demes B, Larson SG, Stern JT, Jungers WL, Biknevicius AR, Schmitt D (1994) The kinetics of primate quadrupedalism: hindlimb drive reconsidered. J Hum Evol 26:353–374.

    Article  Google Scholar 

  • DeVore I (1992) An interview with Sherwood Washburn. Curr Anthropol 33:411–423.

    Article  Google Scholar 

  • Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21:649–669.

    Article  Google Scholar 

  • Elftman H, Manter J (1935) Chimpanzee and human feet in bipedal walking. Am J Phys Anthropol 20:69–79.

    Article  Google Scholar 

  • Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86.

    PubMed  CAS  Google Scholar 

  • Farley CT, Ko TC (1997) Mechanics of locomotion in lizards. J Exp Biol 200:2177–2188.

    PubMed  CAS  Google Scholar 

  • Fleagle JG (1974) Dynamics of a brachiating siamang [Hylobates (Symphalangus) syndactylus]. Nature 248:259–260.

    Article  PubMed  CAS  Google Scholar 

  • Fleagle JG (1979) Primate positional behavior and anatomy: naturalistic and experimental approaches. In: Morbeck ME, Preuschoft H, Gomberg N (eds), Environment, Behavior, and Morphology: Dynamic Interactions in Primates. Wenner-Gren Foundation, New York, pp 313–326.

    Google Scholar 

  • Franz TM, Demes B, Carlson KJ (2005) Gait mechanics of lemurid primates on terrestrial and arboreal substrates. J Hum Evol 48:199–217.

    Article  PubMed  Google Scholar 

  • Full RJ, Tu MS (1990) Mechanics of six-legged runners. J Exp Biol 148:129–146.

    PubMed  CAS  Google Scholar 

  • Full RJ (1991) Animal motility and gravity. The Physiologist 34:S15–S18.

    PubMed  CAS  Google Scholar 

  • Gambaryan PP (1974) How Mammals Run. John Wiley & Sons, New York.

    Google Scholar 

  • Gatesy SM, Biewener AA (1991) Bipedal locomotion: effects of speed, size, and limb posture in birds and humans. J Zool Lond 224:127–147.

    Article  Google Scholar 

  • Grand TI (1968a) The functional anatomy of the lower limb of the howler monkey (Alouatta caraya). Am J Phys Anthropol 28:163–181.

    Article  PubMed  CAS  Google Scholar 

  • Grand TI (1968b) Functional anatomy of the upper limb. Biology of the howler monkey (Alouatta caraya). Bibl Primatol 7:104–125.

    Google Scholar 

  • Gray J (1968) Animal Locomotion. Wiedenfeld and Nicolson, London.

    Google Scholar 

  • Griffin TM, Kram R (2000) Penguin waddling is not wasteful. Nature 408:929.

    Article  PubMed  CAS  Google Scholar 

  • Griffin TM, Main RP, Farley CT (2004) Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements? J Exp Biol 207:3545–3558.

    Article  PubMed  Google Scholar 

  • Grossman A (2006) Propagating Mike’s memes: behavioral reconstruction in paleoanthropology: Evol Anthropol 15:158–159.

    Article  Google Scholar 

  • Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration Biomimetics 3:034001.

    Article  PubMed  Google Scholar 

  • Heglund NC, Cavagna GA, Taylor CR (1982) Energetics and mechanics of terrestrial locomotion. III. Energy changes of the center of mass as a function of speed and body size in birds and mammals. J Exp Biol 97:41–56.

    PubMed  CAS  Google Scholar 

  • Hildebrand M (1967) Symmetrical gaits of primates. Am J Phys Anthropol 26:119–130.

    Article  Google Scholar 

  • Hildebrand M (1985) Walking and running. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds), Functional Vertebrate Morphology. Harvard University Press, Cambridge, MA, pp 38–57.

    Google Scholar 

  • Homberger DG (1988) Models and tests in functional morphology: the significance of description and integration. Am Zool 28:217–229.

    Google Scholar 

  • Howell AB (1944) Speed in Animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Hutchinson JR, Famini D, Lair R, Kram R (2003) Are fast-moving elephants really running? Nature 422:493–494.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Okada M, Ishida H (1979) Kinesiological characteristics of primate walking: its significance in human walking. In: Morbeck M, Preuschoft H, Gomberg N (eds), Environment, Behavior, and Morphology: Dynamic Interactions in Primates. Gustav Fischer, New York, pp 297–312.

    Google Scholar 

  • Kimura T (1985) Bipedal and quadrupedal walking of primates, comparative dynamics. In: Kondo S, Ishida H, Kimura T (eds), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism. University of Tokyo Press, Tokyo, pp 81–104.

    Google Scholar 

  • Kimura T (1990) Voluntary bipedal walking of infant chimpanzees. In: Jouffroy FK, Stack MH, Niemitz C (eds), Gravity, Posture and Locomotion in Primates. Il Sedicesimo, Florence, pp 237–251.

    Google Scholar 

  • Kimura T (1991) Body center of gravity and energy expenditure during bipedal locomotion in humans, chimpanzees and macaques. Primate Rep 31:19–20.

    Google Scholar 

  • Kimura T (1996) Center of gravity of the body during the ontogeny of chimpanzee bipedal walking. Folia Primatol 66:126–136.

    Article  PubMed  CAS  Google Scholar 

  • Kram R, Taylor CR (1990) Energetics of running: a new perspective. Nature 346:265–267.

    Article  PubMed  CAS  Google Scholar 

  • Larney E, Larson SG (2004) Limb compliance during walking: comparisons of elbow and knee yield across quadrupedal primates and in other mammals. Am J Phys Anthropol 125:42–50.

    Article  PubMed  Google Scholar 

  • Larson SG (1998) Unique aspects of quadrupedal locomotion in nonhuman primates. In: Strasser E, Fleagle JG, Rosenberger AL, McHenry HM (eds), Primate Locomotion: Recent Advances. Plenum, New York, pp 157–173.

    Google Scholar 

  • Larson SG, Schmitt D, Lemelin P, Hamrick MW (1999) The uniqueness of primate forelimb posture during quadrupedal locomotion. Am J Phys Anthropol 112:87–101.

    Article  Google Scholar 

  • Larson SG, Schmitt D, Lemelin P, Hamrick MW (2001) Limb excursion during quadrupedal walking, How do primates compare to other mammals. J Zool Lond 255:353–365.

    Article  Google Scholar 

  • Lauder GV (1996) The argument from design. In: Rose MR, Lauder GV (eds), Adaptation. Academic Press, San Diego, pp 55–91.

    Google Scholar 

  • Lee CR, Farley CT (1998) Determinants of the center of mass trajectory in human walking and running. J Exp Biol 201:2935–2944.

    PubMed  CAS  Google Scholar 

  • Lemelin P, Schmitt D (2007) The origins of grasping and locomotor adaptations in primates: Comparative and experimental approaches using an opossum model. In: M. Dagosto & M. Ravosa (eds.), Primate origins, New York: Springer, pp. 329–380.

    PubMed  CAS  Google Scholar 

  • Magne de la Croix P (1936) The evolution of locomotion in mammals. J Mammal 17:51–54.

    Article  Google Scholar 

  • Manter JT (1938) The dynamics of quadrupedal walking. J Exp Biol 15:522–540.

    Google Scholar 

  • Meldrum DJ (1991) Kinematics of the Cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adapatations. Am J Phys Anthropol 84:273–290.

    Article  PubMed  CAS  Google Scholar 

  • Morbeck ME (1979) Forelimb use and positional adpatation in Colobus guereza: integration of behavioral, ecological, and anatomical data. In: Morbeck M, Preuschoft H, Gomberg N (eds), Environment, Behavior, and Morphology: Dynamic Interactions in Primates. Gustav Fisher, New York, pp 95–118.

    Google Scholar 

  • Muybridge E (1887) Animals in Motion [1957 reprint]. Dover, New York.

    Google Scholar 

  • O’Neill M (2009) The Structure of Locomotor Cost: Gait, Mechanics and Limb Design in Ringtailed Lemurs (Lemur catta). Ph.D. thesis, The Johns Hopkins University.

    Google Scholar 

  • Plavcan JM, Kay RF, Jungers WL, van Schaick CL (2002) Reconstructing Behavior in the Primate Fossil Record. Springer, New York.

    Book  Google Scholar 

  • Pontzer H (2007a) Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds. J Exp Biol 210:484–494.

    Article  PubMed  Google Scholar 

  • Pontzer H (2007b) Effective limb length and the scaling of locomotor cost in terrestrial animals. J Exp Biol 210:1752–1761.

    Article  PubMed  Google Scholar 

  • Preuschoft H (1990) Gravity in primates and its relation to body shape and locomotion. In: Jouffroy FK, Stack MH, Niemitz C (eds), Gravity, Posture and Locomotion in Primates. Il Sedicesimo, Florence, pp 109–127.

    Google Scholar 

  • Roberts TJ, Kram R, Weyand PG, Taylor CR (1998a) Energetics of bipedal running. I. Metabolic cost of generating force. J Exp Biol 201:2745–2751.

    PubMed  CAS  Google Scholar 

  • Roberts TJ, Chen MS, Taylor CR (1998b) Energetics of bipedal running. II. Limb design and running mechanics. J Exp Biol 201:2753–2762.

    PubMed  CAS  Google Scholar 

  • Rollinson J, Martin RD (1981) Comparative aspects of primate locomotion with special reference to arboreal cercopithecines. Symp Zool Soc Lond 48:377–427.

    Google Scholar 

  • Rose MD (1979) Positional behavior of some natural populations: some quantitative results of a field study of Colobus guereza and Cercopithecus aethiops. In: Morbeck ME, Preuschoft H, Gomberg N (eds), Environment, Behavior and Morphology: Dynamic Interactions in Primates. Fischer, New York, pp 75–93.

    Google Scholar 

  • Rubenson J, Heliams DB, Lloyd DG, Fournier PA (2004) Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase. Proc Biol Sci 271:1091–1099.

    Article  PubMed  Google Scholar 

  • Ruina A, Bertram JEA, Srinivasan M (2005) A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J Theor Biol 237:170–192.

    Article  PubMed  Google Scholar 

  • Schmitt D (1998) Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World Monkeys. In: Strasser E, Fleagle JG, Rosenberger AL, McHenry HM (eds), Primate Locomotion: Recent Advances. Plenum Press, New York, pp 175–200.

    Google Scholar 

  • Schmitt D (1999) Compliant walking in primates. J Zool 247:149–160.

    Article  Google Scholar 

  • Schmitt D (2003a) Evolutionary implications of the unusual walking mechanics of the common marmoset (Callithrix jacchus). Am J Phys Anthropol 122:28–37.

    Article  PubMed  Google Scholar 

  • Schmitt D (2003b) Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in extinct primates. J Hum Evol 44:47–58.

    Article  PubMed  Google Scholar 

  • Schmitt D (2003c) Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol 206:1437–1448.

    Article  PubMed  Google Scholar 

  • Schmitt D, Hanna J (2004) Substrate alters forelimb to hindlimb peak force ratios on primates. J Hum Evol 46:237– 252.

    Article  Google Scholar 

  • Schmitt D, Larson SG, Stern JT (1994) Serratus ventralis function in vervet monkeys: Are primate quadrupeds unique? J Zool 232:215–230.

    Article  Google Scholar 

  • Schmitt D, Lemelin P (2002) The origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthropol 118:231–238.

    Article  PubMed  Google Scholar 

  • Schmitt D, Lemelin P (2004) Locomotor mechanics of the slender loris (Loris tardigradus). J Hum Evol 47:85–94.

    Article  PubMed  Google Scholar 

  • Schmitt D, Cartmill M, Hanna J, Griffin T, Lemelin P (2006) Adaptive value of ambling gait in primates and other mammals. J Exp Biol 209:2042–2049.

    Article  PubMed  Google Scholar 

  • Schmitt D, Pai AK, O’Neill MC, Bishop KL (2008) Center of mass movements in arboreal and terrestrial prosimians. Am J Phys Anthropol, Suppl. 46:187.

    Google Scholar 

  • Schmitt D, Wall CE, Lemelin P (2008) Experimental comparative anatomy in physical anthropology: the functional anatomy of the skull and the contributions of Dr. William Hylander. In: Vinyard C, Ravosa M, Wall C (eds), Primate Craniofacial Biology. Springer, New York, pp 3–15.

    Chapter  Google Scholar 

  • Shapiro LJ, Raichlen DA (2005) Lateral sequence walking in infant Papio cynocephalus: implications for the evolution of diagonal sequence walking in primates. Am J Phys Anthropol 126:205–213.

    Article  PubMed  Google Scholar 

  • Shapiro LJ, Raichlen DA (2007) A response to Cartmill et al.: Primate gaits and arboreal stability. Am J Phys Anthropol 133:825–827.

    Article  Google Scholar 

  • Sockol MD, Raichlen DA, Pontzer H (2007) Chimpanzee locomotor energetics and the origin of human bipedalism. PNAS 104:12265–12269.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR (1985) Force development during sustained locomotion: a determinant of gait, speed and metabolic power. J Exp Biol 115:253–262.

    PubMed  CAS  Google Scholar 

  • Usherwood JR, Williams SB, Wilson AM (2007) Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their collisional implications. J Exp Biol 210:533–540.

    Article  PubMed  Google Scholar 

  • Vilensky JA (1989) Primate quadrupedalism: how and why does it differ from that of typical quadrupeds? Brain Behav Evol 34:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Vilensky JA, Larson SG (1989) Primate Locomotion: Utilization and control of symmetrical gaits. Annu Rev Anthropol 18:17–35.

    Article  Google Scholar 

  • Wallace IJ, Demes B (2008) Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates. J Hum Evol 54:783–794.

    Article  PubMed  Google Scholar 

  • Washburn SL (1951a) The analysis of primate evolution with particular reference to the origin of man. Cold Spring Harbor Symp Quant Biol 15:67–78.

    Article  Google Scholar 

  • Washburn SL (1951b) The new physical anthropology. Trans NY Acad Sci (Series II) 13:298–304.

    Article  CAS  Google Scholar 

  • Wells JP, Wood GA (1975) The application of biomechanical motion analysis to aspects of green monkey (Cercopithecus a. sabaeus) locomotion. Am J Phys Anthropol 43:217–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmitt, D. (2011). Translating Primate Locomotor Biomechanical Variables from the Laboratory to the Field. In: D'Août, K., Vereecke, E. (eds) Primate Locomotion. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1420-0_2

Download citation

Publish with us

Policies and ethics