Gait and Kinematics of Arboreal Quadrupedal Walking of Free-ranging Red Howlers (Alouatta seniculus) in French Guiana

  • Dionisios Youlatos
  • Jean-Pierre Gasc
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


The understanding of the adaptive significance of primate locomotor diversity requires studies under naturalistic conditions that combine frequency of use and biomechanical analyses. Here, we report on limb kinematics and gait parameters of the arboreal quadrupedal walk of adult free-ranging red howlers (Alouatta seniculus). The data derive from the analysis of original video recordings shot in a primary rain forest in French Guiana. Diagonal-sequence diagonal-couplets walks largely dominated, with mean speeds of 0.67 ± 0.26 m/s. Stance duration was equal for both limbs. During the forelimb swing phase, arm abduction and protraction and elbow extension were the principal movements. Arm abduction and retraction, progressive elbow extension, and forearm pronation dominated ­during the stance phase. During the swing phase of the hind limb, hip flexion, thigh abduction, and knee extension dominated. Hip extension, thigh abduction, and knee extension were the main movements during the stance phase. These findings appear to support preliminary laboratory observations, provide a background for biomechanical associations, and underline the evolutionary and adaptive importance of morpho-functional complexes within the primate radiation.


Field study Limb excursions Locomotion New World monkeys Primates 



center of mass


diagonal-sequence diagonal-couplet


probability level


  1. Aerts P, van Damme R, van Elsacker L, Duchene V (2000) Spatio-temporal gait characteristics of the hindlimb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan ­paniscus). Am J Phys Anthropol 111:503–517.PubMedCrossRefGoogle Scholar
  2. Alexander RMcN, Maloiy GMO (1984) Stride lengths and stride frequencies of primates. J Zool Lond 202:577–582.CrossRefGoogle Scholar
  3. Cant JGH (1992) Positional behavior and body size of arboreal primates: a theoretical framework and an illustration of its application. Am J Phys Anthropol 88:273–283.PubMedCrossRefGoogle Scholar
  4. Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetrical gaits in mammals. Zool J Linn Soc 136: 401–420.CrossRefGoogle Scholar
  5. Cartmill M, Lemelin P, Schmitt D (2007) Understanding the adaptive value of diagonal-sequence gaits in primates: a comment on Shapiro and Raichlen, 2005. Am J Phys Anthrop 133:822–825.PubMedCrossRefGoogle Scholar
  6. Dagosto M, Gebo DL (1998) Methodological issues in studying positional behavior. In: Strasser E, Fleagle J, Rosenberger A, McHenry H, (eds), Primate Locomotion: Recent Advances. Plenum Press, New York, pp 5–29.Google Scholar
  7. D’Août K, Aerts P, Clercq de D, De Meester K, Van Elsacker L (2002) Segment and joint angles of the hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am J Phys Anthropol 119:37–51.PubMedCrossRefGoogle Scholar
  8. Demes B, Larson SG, Stern JT Jr, et al (1994) The kinetics of primate quadrupedalism: “hind limb drive’ reconsidered. J Hum Evol 26:353–374.CrossRefGoogle Scholar
  9. Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21:649–669.CrossRefGoogle Scholar
  10. Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002) Basic limb kinematics of small therian mammals. J Exp Biol 205:1315–1338PubMedGoogle Scholar
  11. Fleagle JG, Stern JT, Jungers WL, Susman RL, Vangor AK, Wells JP (1981) Climbing: a biomechanical link with brachiation and bipedalism. Symp Zool Soc Lond 48:359–375.Google Scholar
  12. Franz TM, Demes B, Carlson KJ (2005) Gait mechanics of lemurid primates on terrestrial and arboreal substrates. J Hum Evol 48:199–217.PubMedCrossRefGoogle Scholar
  13. Gambaryan PP (1974) How Mammals Run. Keter Publishing House, Jerusalem.Google Scholar
  14. Gasc JP (2001) Comparative aspects of gait, scaling and mechanics in mammals. Comp Biochem Physiol A Mol Integr Physiol 131:135–144.PubMedCrossRefGoogle Scholar
  15. Gebo DL (1989) Locomotor and phylogenetic considerations in anthropoid evolution. J Hum Evol 18:201–233.CrossRefGoogle Scholar
  16. Grand TI (1968) Functional anatomy of the upper limb. In: Malinow MR (ed), Biology of the Howler Monkey (Alouatta caraya). Karger, Basel, pp 104–125.Google Scholar
  17. Grand TI (1984) Motion economy within the canopy: four strategies for mobility. In: Rodman PS, Cant JGH (eds), Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys, and Apes. Columbia University Press, New York, pp 54–72.Google Scholar
  18. Hildebrand M (1967) Symmetrical gaits of primates. Am J Phys Anthropol 26:119–130.CrossRefGoogle Scholar
  19. Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387.CrossRefGoogle Scholar
  20. Isler K, Thorpe SKS (2003) Gait parameters in vertical climbing of captive, rehabilitant and wild Sumatran orang-utans (Pongo pygmaeus abelii). J Exp Biol 206:4081–4096.PubMedCrossRefGoogle Scholar
  21. Isler K, Gruter CC (2006) Arboreal locomotion in wild black-and-white snub-nosed monkeys (Rhinopithecus bieti). Folia Primatol 77:195–211.PubMedCrossRefGoogle Scholar
  22. Jenkins FA Jr (1971) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J Zool Lond 165:303–315.CrossRefGoogle Scholar
  23. Jenkins FA Jr, Camazine SM (1977) Hip structure and locomotion in ambulatory and cursorial carnivores. J Zool Lond 181:351–370.CrossRefGoogle Scholar
  24. Jones AL (2008) The evolution of brachiation in ateline primates, ancestral character states and history. Am J Phys Anthropol 137:123–144.PubMedCrossRefGoogle Scholar
  25. Jouffroy FK, Renous S, Gasc JP (1983) Etude cinéradiographique des déplacements du membre antérieur du potto du Bosman (Perodicticus potto Muller, 1766) au cours de la marche quadrupède sur une branche horizontale. Ann Sci Nat Zool 5:75–87.Google Scholar
  26. Kimura T, Okada M, Ishida H (1979) Kinesiological characteristics of primate walking: its ­significance in human walking. In: Morbeck ME, Preuschoft H, Gomberg N (eds), Environment, Behavior, and Morphology: Dynamic Interactions in Primates. Gustav Fischer, New York, pp 297–311.Google Scholar
  27. Kimura T (1992) Hind limb dominance during primate high-speed locomotion. Primates 33:465–474.CrossRefGoogle Scholar
  28. Larson SG, Stern JT (1989) The use of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops): implications for interpretation of humeral morphology. Am J Phys Anthropol 79:369–377.PubMedCrossRefGoogle Scholar
  29. Larson SG, Stern JT (1992) Further evidence for the role of supraspinatus in quadrupedal ­monkeys. Am J Phys Anthropol 87:359–363.PubMedCrossRefGoogle Scholar
  30. Larson SG, Schmitt D, Lemelin P, Hamrick M (2000) Uniqueness of primate forelimb posture during quadrupedal locomotion. Am J Phys Anthropol 112:87–101.PubMedCrossRefGoogle Scholar
  31. Larson SG, Stern JT (2006) Maintenance of above-branch balance during primate arboreal ­quadrupedalism: coordinated use of forearm rotators and tail motion. Am J Phys Anthropol 129:71–81.PubMedCrossRefGoogle Scholar
  32. Lemelin P, Schmitt D, Cartmill M (2003) Footfall patterns and interlimb coordination in ­opossums (Family Didelphidae): evidence for the evolution of diagonal-sequence walking gaits in ­primates. J Zool 260:423–429.CrossRefGoogle Scholar
  33. McLearn D (1992) Locomotion, posture and feeding behavior of kinkajous, coatis and racoons. J Mammal 73:245–261.CrossRefGoogle Scholar
  34. Milton K (1980) The Foraging Strategy of Howler Monkeys. Columbia University Press, New York.Google Scholar
  35. Napier JR, Walker AC (1967) Vertcial clinging and leaping: a newly recognized category of locomotor behavior of primates. Folia Primatol 6:204–219.PubMedCrossRefGoogle Scholar
  36. Nyakatura JA, Fischer MS, Schmidt M (2008) Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am J Phys Anthropol 135:13–26.PubMedCrossRefGoogle Scholar
  37. Reynolds TR (1985a) Mechanics of increased support of weight by the hind limbs in primates. Am J Phys Anthropol 67:335–349.PubMedCrossRefGoogle Scholar
  38. Reynolds TR (1985b) Stresses on the limbs of quadrupedal primates. Am J Phys Anthropol 67:351–362.PubMedCrossRefGoogle Scholar
  39. Rollinson J, Martin RD (1981) Comparative aspects of primate locomotion, with special reference to arboreal cercopithecines. Symp Zool Soc Lond 48:377–427.Google Scholar
  40. Rose MD (1973) Quadrupedalism in primates. Primates 14:337–357.CrossRefGoogle Scholar
  41. Rosenberger AL, Strier KB (1989) Adaptive radiation of the ateline primates. J Hum Evol 18:717–750.CrossRefGoogle Scholar
  42. Schilling N, Fischer MS (1999) Kinematic analysis of treadmill locomotion of tree shrews, Tupaia glis (Scandentia: Tupaiidae). Z Saugetierk 64:129–153.Google Scholar
  43. Schmidt M, Fischer MS (2000) Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae). Am J Phys Anthropol 111:245–262.PubMedCrossRefGoogle Scholar
  44. Schmidt M (2005) Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces. Am J Phys Anthropol 128:359–370.PubMedCrossRefGoogle Scholar
  45. Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J Hum Evol 26:441–458.CrossRefGoogle Scholar
  46. Schmitt D (1999) Compliant walking in primates. J Zool 248:149–160.CrossRefGoogle Scholar
  47. Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthropol 118:231–238.PubMedCrossRefGoogle Scholar
  48. Schmitt D (2003) Evolutionary implications of the unusual walking mechanics of the common marmoset (C. jacchus). Am J Phys Anthropol 122:28–37.PubMedCrossRefGoogle Scholar
  49. Schmitt D, Lemelin P (2004) Locomotor mechanics of the slender loris (Loris tardigradus). J Hum Evol 47(1–2): 85–94.PubMedCrossRefGoogle Scholar
  50. Schön MA (1968) The muscular system of the red howling monkey. US Natl Mus Bull 273:1–185.CrossRefGoogle Scholar
  51. Schön Ybarra MA (1998) Arboreal quadrupedalism and forelimb articular anatomy of red ­howlers. Int J Primatol 19:599–613.CrossRefGoogle Scholar
  52. Shapiro LJ, Raichlen DA (2005) Lateral sequence walking in infant Papio cynocephalus: ­implications for the evolution of diagonal sequence walking in primates. Am J Phys Anthropol 126:205–213.PubMedCrossRefGoogle Scholar
  53. Stern JT, Wells JP, Vangor AK, Fleagle JG (1977) EMG of some muscles of the upper limb in Ateles and Lagothrix. Yrbk Phys Anthropol 20:498–507.Google Scholar
  54. Stern JT, Wells JP, Jungers WL, Vangor AK (1980a) An EMG study of the serratus anterior in atelines and Alouatta: implications for hominoid evolution. Am J Phys Anthropol 52:323–334.CrossRefGoogle Scholar
  55. Stern JT, Wells JP, Jungers WL, Vangor AK, Fleagle JG (1980b) An EMG study of the pectoralis major in atelines and Hylobates, with special reference to the evolution of a pars clavicularis. Am J Phys Anthropol 52:13–25.PubMedCrossRefGoogle Scholar
  56. Stevens NJ (2006) Stability, limb coordination and substrate type: the ecorelevance of gait sequence pattern in primates. J Exp Zool 305A:953–963.CrossRefGoogle Scholar
  57. Strier KB (1992) Atelinae adaptations: behavioral strategies and ecological constraints. Am J Phys Anthropol 88:515–524.PubMedCrossRefGoogle Scholar
  58. Taylor ME (1970) Locomotion in some East African viverrids. J Mammal 51:42–51.CrossRefGoogle Scholar
  59. Vilensky JA (1989) Primate quadrupedalism: how and why does it differ from that of typical quadrupeds? Brain Behav Evol 34:357–364.PubMedCrossRefGoogle Scholar
  60. Vilensky JA, Larson SG (1989) Primate locomotion: utilization and control of symmetrical gaits. Ann Rev Anthropol 18:17–35.CrossRefGoogle Scholar
  61. Vilensky JA, Gankiewicz E (1990) Effects of speed on forelimb joint angular displacement ­patterns in vervet monkeys (Cercopithecus aethiops). Am J Phys Anthropol 83:203–210.PubMedCrossRefGoogle Scholar
  62. Vilensky JA, Moore AM, Libii JN (1994) Squirrel monkey locomotion on an inclined treadmill: implications for the evolution of gaits. J Hum Evol 26:375–386.CrossRefGoogle Scholar
  63. Wallace I, Demes B (2008) Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates. J Hum Evol 54:783–794.PubMedCrossRefGoogle Scholar
  64. Youlatos D (1994) Maitrîse de l’espace et accès aux ressources chez le singe hurleur roux (Alouatta seniculus) de la Guyane Française: étude morpho-fonctionnelle. PhD dissertation, Muséum National d’Histoire Naturelle, Paris.Google Scholar
  65. Youlatos D (1998) Seasonal variation in the positional behavior of red howling monkeys. Primates 39:447–455.CrossRefGoogle Scholar
  66. Youlatos D (1999) The schizodactylous grasp of the howling monkey. Z Morph Anthrop 82:187–198.Google Scholar
  67. Youlatos D (2000) Functional anatomy of forelimb muscles in Guianan Atelines (Platyrrhini: Primates). Ann Sci Nat Zool Biol Anim 21:137–151.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Zoology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations