Current Understanding of Genetic Factors in Idiopathic Scoliosis



“Scoliosis” is derived from the Greek word meaning “crooked” and was used for the first time by Galen (AD 131–201) to describe an “S-shaped” or “C-shaped” spinal deformity (Fig. 9.1). Although defined as a lateral curvature as visualized by plane radiography, the deformity is actually three-dimensional and involves changes in the frontal, sagittal, and transverse planes of the spinal column. Patients treated for scoliosis generally belong to one of the three categories. In so-called congenital scoliosis, the structural curvature of the spine is clearly secondary to radiographically visible vertebral malformations and is typically obvious at an early age. Other patients may have scoliosis as part of other pathological conditions.


Autism Spectrum Disorder Idiopathic Scoliosis Cobb Angle Spinal Muscular Atrophy Spinal Deformity 



We thank Stuart Almond and Sarah Tune for their expert help with images.


  1. Abu-Amero, S., Monk, D., Frost, J., Preece, M., Stanier, P., and Moore, G.E. (2008). The genetic aetiology of Silver–Russell syndrome. J. Med. Genet. 45: 193–199.Google Scholar
  2. Alden, K.J., Marosy, B., Nzegwu, N., Justice, C.M., Wilson, A.F., and Miller, N.H. 2006. Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine 31:1815–1819.PubMedGoogle Scholar
  3. Andersen, M.O., Thomsen, K., and Kyvik, K.O. 2007. Adolescent idiopathic scoliosis in twins: a population-based survey. Spine 32:927–930.PubMedGoogle Scholar
  4. Bagnall, K.M., Beuerlein, M., Johnson, P., Wilson, J., Raso, V.J., and Moreau, M. 2001. Pineal transplantation after pinealectomy in young chickens has no effect on the development of scoliosis. Spine 26:1022–1027.PubMedGoogle Scholar
  5. Barreiro, L.B., Laval, G., Quach, H., Patin, E., and Quintana-Murci, L. 2008. Natural selection has driven population differentiation in modern humans. Nat. Genet. 40:340–345.PubMedGoogle Scholar
  6. Bashiardes, S., Veile, R., Allen, M., Wise, C.A., Dobbs, M., Morcuende, J.A., Szappanos, L., Herring, J.A., Bowcock, A.M., and Lovett, M. 2004. SNTG1, the gene encoding gamma1-syntrophin: a candidate gene for idiopathic scoliosis. Hum. Genet .115:81–89.PubMedGoogle Scholar
  7. Bassett, A.S., Chow, E.W., Husted, J., Weksberg, R., Caluseriu, O., Webb, G.D., and Gatzoulis, M.A. 2005. Clinical features of 78 adults with 22q11 Deletion Syndrome. Am. J. Med. Genet. A 138:307–313.PubMedGoogle Scholar
  8. Beattie, C.E., Carrel, T.L., and McWhorter, M.L. 2007. Fishing for a mechanism: using zebrafish to understand spinal muscular atrophy. J. Child Neurol. 22:995–1003.PubMedGoogle Scholar
  9. Bell, M., and Teebi, A.S. 1995. Autosomal dominant idiopathic scoliosis? Am. J. Med. Genet. 55:112.PubMedGoogle Scholar
  10. Bittel, D.C., and Butler, M.G. 2005. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev. Mol. Med. 7:1–20.PubMedGoogle Scholar
  11. Bosman, E.A., Penn, A.C., Ambrose, J.C., Kettleborough, R., Stemple, D.L., and Steel, K.P. 2005. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum. Mol. Genet. 14:3463–3476.PubMedGoogle Scholar
  12. Botstein, D., and Risch, N. 2003. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat. Genet. 33 Suppl:228–237.PubMedGoogle Scholar
  13. Campbell, L., Potter, A., Ignatius, J., Dubowitz, V., and Davies, K. (1997). Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am. J. Hum. Genet. 61: 40–50.Google Scholar
  14. Carlson, C.S., Eberle, M.A., Kruglyak, L., and Nickerson, D.A. 2004. Mapping complex disease loci in whole-genome association studies. Nature 429:446–452.PubMedGoogle Scholar
  15. Carlson, C., Sirotkin, H., Pandita, R., Goldberg, R., McKie, J., Wadey, R., Patanjali, S.R., Weissman, S.M., Anyane-Yeboa, K., Warburton, D., Scrambler, P., Shprintzen, R., Kucherlapati, R., and Morrow, B.E. (1997). Molecular definition of 22ql1 deletions in 151 vela-cardio-facial syndrome patients. Am. J. Hum. Genet. 61: 620–629.Google Scholar
  16. Carr, A.J., Ogilvie, D.J., Wordsworth, B.P., Priestly, L.M., Smith, R., and Sykes, B. 1992. Segregation of structural collagen genes in adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 274:305–310.PubMedGoogle Scholar
  17. Carter, O.D., and Haynes, S.G. 1987. Prevalence rates for scoliosis in US adults: results from the first National Health and Nutrition Examination Survey. Int. J. Epidemiol. 16: 537–544.PubMedGoogle Scholar
  18. Chan, V., Fong, G.C., Luk, K.D., Yip, B., Lee, M.K., Wong, M.S., Lu, D.D., and Chan, T.K. 2002. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am. J. Hum. Genet. 71:401–406.PubMedGoogle Scholar
  19. Chanock, S.J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D.J., Thomas, G., Hirschhorn, J.N., Abecasis, G., Altshuler, D., Bailey-Wilson, J.E., Brooks, L.D., Cardon, L.R., Daly, M., Donnelly, P., Fraumeni, J.F., Jr., Freimer, N.B., Gerhard, D.S., Gunter, C., Guttmacher, A.E., Guyer, M.S., Harris, E.L., Hoh, J., Hoover, R., Kong, C.A., Merikangas, K.R., Morton, C.C., Palmer, L.J., Phimister, E.G., Rice, J.P., Roberts, J., Rotimi, C., Tucker, M.A., Vogan, K.J., Wacholder, S., Wijsman, E.M., Winn, D.M., and Collins, F.S. 2007. Replicating genotype-phenotype associations. Nature 447:655–660.PubMedGoogle Scholar
  20. Chen, Z., Tang, N.L., Cao, X., Qiao, D., Yi, L., Cheng, J.C., and Qiu, Y. 2008. Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur. J. Hum. Genet. 17(4):525–532.PubMedGoogle Scholar
  21. Cheng, J.C., Guo, X., and Sher, A.H. 1999. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine 24:1218–1222.PubMedGoogle Scholar
  22. Cheng, J.C., Hung, V.W., Lee, W.T., Yeung, H.Y., Lam, T.P., Ng, B.K., Guo, X., and Qin, L. 2006. Persistent osteopenia in adolescent idiopathic scoliosis–longitudinal monitoring of bone mineral density until skeletal maturity. Stud. Health Technol. Inform. 123:47–51.PubMedGoogle Scholar
  23. Colella, S., Yau, C., Taylor, J.M., Mirza, G., Butler, H., Clouston, P., Bassett, A.S., Seller, A., Holmes, C.C., and Ragoussis, J. 2007. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 35:2013–2025.PubMedGoogle Scholar
  24. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., and Pritchard, J.K. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet, 38:75–81.PubMedGoogle Scholar
  25. Cowell, H.R., Hall, J.N., and MacEwen, G.D. 1972. Genetic aspects of idiopathic scoliosis. A Nicholas Andry Award essay, 1970. Clin. Orthop. Relat. Res. 86:121–131.PubMedGoogle Scholar
  26. Daruwalla, J.S., Balasubramaniam, P., Chay, S.O., Rajan, U., and Lee, H.P. 1985. Idiopathic scoliosis. Prevalence and ethnic distribution in Singapore schoolchildren. J. Bone Joint Surg. Br. 67:182–184.PubMedGoogle Scholar
  27. De George, F.V., and Fisher, R.L. 1967. Idiopathic scoliosis: genetic and environmental aspects. J. Med. Genet. 4:251–257.PubMedGoogle Scholar
  28. de Vries, B.B., Pfundt, R., Leisink, M., Koolen, D.A., Vissers, L.E., Janssen, I.M., Reijmersdal, S., Nillesen, W.M., Huys, E.H., Leeuw, N., Smeets, D., Sistermans, E.A., Feuth, T., van Ravenswaaij-Arts, C.M., van Kessel, A.G., Schoenmakers, E.F., Brunner, H.G., and Veltman, J.A. 2005. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77:606–616.PubMedGoogle Scholar
  29. Deak, F., Piecha, D., Bachrati, C., Paulsson, M., and Kiss, I. 1997. Primary structure and expression of matrilin-2, the closest relative of cartilage matrix protein within the von Willebrand factor type A-like module superfamily. J. Biol. Chem. 272:9268–9274.PubMedGoogle Scholar
  30. Delahaye, A., Sznajer, Y., Lyonnet, S., Elmaleh-Berges, M., Delpierre, I., Audollent, S., Wiener-Vacher, S., Mansbach, A.L., Amiel, J., Baumann, C., Bremond-Gignac, D., Attie-Bitach, T., Verloes, A., and Sanlaville, D. 2007. Familial CHARGE syndrome because of CHD7 mutation: clinical intra- and interfamilial variability. Clin. Genet. 72:112–121.PubMedGoogle Scholar
  31. Dessaud, E., McMahon, A.P., and Briscoe, J. 2008. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development. 135:2489–2503.PubMedGoogle Scholar
  32. Dickson, R.A. 1983. Scoliosis in the community. Br. Med. J. (Clin Res Ed). 286:615–618.Google Scholar
  33. Doyle, C., and Blake, K. 2005. Scoliosis in CHARGE: a prospective survey and two case reports. Am. J. Med. Genet. A 133A:340–343.PubMedGoogle Scholar
  34. Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M..S, Daly, M.J., Steinhart, A.H., Abraham, C., Regueiro, M., Griffiths, A., Dassopoulos, T., Bitton, A., Yang, H., Targan, S., Datta, L.W., Kistner, E.O., Schumm, L.P., Lee, A.T., Gregersen, P.K., Barmada, M.M., Rotter, J.I., Nicolae, D.L., and Cho, J.H. 2006. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463.PubMedGoogle Scholar
  35. Edelmann, L., Pandita, R.K., Spiteri, E., Funke, B., Goldberg, R., Palanisamy, N., Chaganti, R.S., Mgenis, E., Shprintzen, R.J., and Morrow, B.E. (1999). A common molecular basis for rearrangement disorders on chromosome 22q11. Hum. Mol. Genet. 8:1157–1167.Google Scholar
  36. Edwards, A.O., Ritter, R., 3rd, Abel, K.J., Manning, A., Panhuysen, C., and Farrer, L.A. 2005. Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424.PubMedGoogle Scholar
  37. Filho, N.A., and Thompson, M.W. 1971. Genetic studies in scoliosis. J. Bone Joint Surg. Am. 53:199.Google Scholar
  38. Fjelldal, P.G., Grotmol, S., Kryvi, H., Gjerdet, N.R., Taranger, G.L., Hansen, T., Porter, M.J., and Totland, G.K. 2004. Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J. Pineal Res. 36:132–139.PubMedGoogle Scholar
  39. Gao, X., Gordon, D., Zhang, D., Browne, R., Helms, C., Gillum, J., Weber, S., Devroy, S., Swaney, S., Dobbs, M., Morcuende, J., Sheffield, V., Lovett, M., Bowcock, A., Herring, J., and Wise, C. 2007. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am. J. Hum. Genet. 80:957–965.PubMedGoogle Scholar
  40. Garland, H.G. 1934. Hereditary scoliosis. Br. Med. J. 1:328.PubMedGoogle Scholar
  41. Gordon, D., and Finch, S.J. 2005. Factors affecting statistical power in the detection of genetic association. J. Clin. Invest. 115:1408–1418.PubMedGoogle Scholar
  42. Grant, S.F., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Manolescu, A., Sainz, J., Helgason, A., Stefansson, H., Emilsson, V., Helgadottir, A., Styrkarsdottir, U., Magnusson, K.P., Walters, G.B., Palsdottir, E., Jonsdottir, T., Gudmundsdottir, T., Gylfason, A., Saemundsdottir, J., Wilensky, R.L., Reilly, M.P., Rader, D.J., Bagger, Y., Christiansen, C., Gudnason, V., Sigurdsson, G., Thorsteinsdottir, U., Gulcher, J.R., Kong, A., and Stefansson, K. 2006. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38:320–323.PubMedGoogle Scholar
  43. Greenberg, F., Lewis, R.A., Potocki, L., Glaze, D., Parke, J., Killian, J., Murphy, M.A., Williamson, D., Brown, F., Dutton, R., McCluggage, C., Friedman, E., Sulek, M., and Lupski, J.R. 1996. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am. J. Med. Genet. 62:247–254.PubMedGoogle Scholar
  44. Guo, X., Chau, W.W., Hui-Chan, C.W., Cheung, C.S., Tsang, W.W., and Cheng, J.C. 2006. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine 31:E437–440.Google Scholar
  45. Haines, J.L., Hauser, M.A., Schmidt, S., Scott, W.K., Olson, L.M., Gallins, P., Spencer, K.L., Kwan, S.Y., Noureddine, M., Gilbert, J.R., Schnetz-Boutaud, N., Agarwal, A., Postel, E.A., and Pericak-Vance, M.A. 2005. Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421.PubMedGoogle Scholar
  46. Helms, C., Cao, L., Krueger, J.G., Wijsman, E.M., Chamian, F., Gordon, D., Heffernan, M., Daw, J.A., Robarge, J., Ott, J., Kwok, P.Y., Menter, A., and Bowcock, A.M. 2003. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat. Genet. 35:349–356.PubMedGoogle Scholar
  47. Helms, C., Saccone, N.L., Cao, L., Daw, J.A., Cao, K., Hsu, T.M., Taillon-Miller, P., Duan, S., Gordon, D., Pierce, B., Ott, J., Rice, J., Fernandez-Vina, M.A., Kwok, P.Y., Menter, A., and Bowcock, A.M. 2005. Localization of PSORS1 to a haplotype block harboring HLA-C and distinct from corneodesmosin and HCR. Hum. Genet. 118:466–476.PubMedGoogle Scholar
  48. Herring, J.A. 2002. Tachdjian’s Pediatric Orthopaedics, 3rd Ed. Philadelphia: W.B. Saunders CompanyGoogle Scholar
  49. Holm, V.A., and Laurnen, E.L. 1981. Prader-Willi syndrome and scoliosis. Dev. Med. Child Neurol. 23:192–201.PubMedGoogle Scholar
  50. Horton, D. 2002. Common skeletal deformities. In Emery & Rimoins Principles and Practices of Medical Genetics, eds. D.L. Rimoin , J.M. Connor, R.E. Pyeritz, and B.R. Korf, pp. 4236–4244. Amsterdam: Churchill Livingstone ElsevierGoogle Scholar
  51. Hosmer, D.A., Lemeshow, S., and May, S. 2008. Applied Survival Analysis Regression Modeling of Time to Event Data. Wiley Series in Probability and Statistics. New York, NY: J. Wiley and SonsGoogle Scholar
  52. Hung, V.W., Qin, L., Cheung, C.S., Lam, T.P., Ng, B.K., Tse, Y.K., Guo, X., Lee, K.M., and Cheng, J.C. 2005. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J. Bone Joint Surg. Am. 87:2709–2716.PubMedGoogle Scholar
  53. Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., and Lee, C. 2004. Detection of large-scale variation in the human genome. Nat. Genet. 36:949–951.PubMedGoogle Scholar
  54. Jacobs, Z., Roberts, R.G., Galbraith, R.F., Deacon, H.J., Grun, R., Mackay, A., Mitchell, P., Vogelsang, R., and Wadley, L. 2008. Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal. Science 322:733–735.PubMedGoogle Scholar
  55. James, J.I. 1954. Idiopathic scoliosis; the prognosis, diagnosis, and operative indications related to curve patterns and the age at onset. J. Bone Joint Surg. Br. 36-B:36–49.PubMedGoogle Scholar
  56. Jen, J.C., Chan, W.M., Bosley, T.M., Wan, J., Carr, J.R., Rub, U., Shattuck, D., Salamon, G., Kudo, L.C., Ou, J., Lin, D.D., Salih, M.A., Kansu, T., Al Dhalaan, H., Al Zayed, Z., MacDonald, D.B., Stigsby, B., Plaitakis, A., Dretakis, E.K., Gottlob, I., Pieh, C., Traboulsi, E.I., Wang, Q., Wang, L., Andrews, C., Yamada, K., Demer, J.L., Karim, S., Alger, J.R., Geschwind, D.H., Deller, T., Sicotte, N.L., Nelson, S.F., Baloh, R.W., and Engle, E.C. 2004. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science. 304:1509–1513.PubMedGoogle Scholar
  57. Jessell, T.M. 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1:20–29.PubMedGoogle Scholar
  58. Jobling, M.A., Hurles, M.E., and Tyler-Smith, C. 2004. Human Evolutionary Genetics: Origins, Peoples, and Disease. New York, NY: GarlandGoogle Scholar
  59. Justice, C.M., Miller, N.H., Marosy, B., Zhang, J., and Wilson, A.F. 2003. Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine 28:589–594.PubMedGoogle Scholar
  60. Juyal, R.C., Figuera, L.E., Hauge, X., Elsea, S.H., Lupski, J.R., Greenberg, F., Baldini, A., and Patel, P.I. (1996). Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients. Am. J. Hum. Genet. 58:998–1007.Google Scholar
  61. Karol, L.A., Johnston, C.E., 2nd, Browne, R.H., and Madison, M. 1993. Progression of the curve in boys who have idiopathic scoliosis. J. Bone Joint Surg. Am. 75:1804–1810.PubMedGoogle Scholar
  62. Kesling, K.L., and Reinker, K.A. 1997. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine. 22:2009–2014.PubMedGoogle Scholar
  63. Kim, H.G., Kurth, I., Lan, F., Meliciani, I., Wenzel, W., Eom, S.H., Kang, G.B., Rosenberger, G., Tekin, M., Ozata, M., Bick, D.P., Sherins, R.J., Walker, S.L., Shi, Y., Gusella, J.F., and Layman, L.C. 2008. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 83:511–519.PubMedGoogle Scholar
  64. Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.Y., Sackler, R.S., Haynes, C., Henning, A.K., SanGiovanni, J.P., Mane, S.M., Mayne, S.T., Bracken, M.B., Ferris, F.L., Ott, J., Barnstable, C., and Hoh, J. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389.PubMedGoogle Scholar
  65. Kulkarni, S., Nagarajan, P., Wall, J., Donovan, D.J., Donell, R.L., Ligon, A.H., Venkatachalam, S., and Quade, B.J. 2008. Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am, J. Med. Genet, A. 146A:1117–1127.Google Scholar
  66. Labrom, R.D. 2007. Growth and maturation of the spine from birth to adolescence. J. Bone Joint Surg. Am. 89 Suppl 1:3–7.PubMedGoogle Scholar
  67. Lalani, S.R., Safiullah, A.M., Fernbach, S.D., Harutyunyan, K.G., Thaller, C., Peterson, L.E., McPherson, J.D., Gibbs, R.A., White, L.D., Hefner, M., Davenport, S.L., Graham, J.M., Bacino, C.A., Glass, N.L., Towbin, J.A., Craigen, W.J., Neish, S.R., Lin, A.E., and Belmont, J.W. 2006. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am. J. Hum. Genet. 78:303–314.PubMedGoogle Scholar
  68. Lupski, J.R. (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14:417–422.Google Scholar
  69. Ledbetter, D.H., Rich, D.C., O’Connell, P., Leppert, M., and Carey, J.C. 1989. Precise localization of NF1 to 17q11.2 by balanced translocation. Am. J. Hum. Genet. 44:20–24.PubMedGoogle Scholar
  70. Lee, W.T., Cheung, C.S., Tse, Y.K., Guo, X., Qin, L., Lam, T.P., Ng, B.K., Cheng, J.C. 2005. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos. Int. 16:1924–1932.PubMedGoogle Scholar
  71. Lonstein, J.E. 1994. Adolescent idiopathic scoliosis. Lancet. 344:1407–1412.PubMedGoogle Scholar
  72. Lowe, T.G., Edgar, M., Margulies, J.Y., Miller, N.H., Raso, V.J., Reinker, K.A., and Rivard, C.H. 2000. Etiology of idiopathic scoliosis: current trends in research. J. Bone Joint Surg. Am. 82-A:1157–1168.PubMedGoogle Scholar
  73. Lupski, J.R. (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14:417–422.Google Scholar
  74. Machida, M., Dubousset, J., Imamura, Y., Iwaya, T., Yamada, T., and Kimura, J. 1993. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 18:1609–1615.PubMedGoogle Scholar
  75. Machida, M., Miyashita, Y., Murai, I., Dubousset, J., Yamada, T., and Kimura, J. 1997. Role of serotonin for scoliotic deformity in pinealectomized chicken. Spine 22:1297–1301.PubMedGoogle Scholar
  76. Machida, M., Murai, I., Miyashita, Y., Dubousset, J., Yamada, T., and Kimura, J. 1999. Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24:1985–1989.PubMedGoogle Scholar
  77. Mallau, S., Bollini, G., Jouve, J.L., and Assaiante, C. 2007. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine 32:E14–E22.PubMedGoogle Scholar
  78. McCarroll, S.A., Hadnott, T.N., Perry, G.H., Sabeti, P.C., Zody, M.C., Barrett, J.C., Dallaire, S., Gabriel, S.B., Lee, C., Daly, M.J., and Altshuler, D.M. 2006. Common deletion polymorphisms in the human genome. Nat. Genet. 38:86–92.PubMedGoogle Scholar
  79. McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D.R., Hinds, D.A., Pennacchio, L.A., Tybjaerg-Hansen, A., Folsom, A.R., Boerwinkle, E., Hobbs, H.H., and Cohen, J.C. 2007. A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491.PubMedGoogle Scholar
  80. Mellars, P. 2006. Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc. Natl. Acad. Sci. U. S. A. 103:9381–9386.PubMedGoogle Scholar
  81. Miller, N.H., Justice, C.M., Marosy, B., Doheny, K.F., Pugh, E., Zhang, J., Dietz, H.C., 3rd, and Wilson, A.F. 2005. Identification of candidate regions for familial idiopathic scoliosis. Spine 30:1181–1187.PubMedGoogle Scholar
  82. Miller, N.H., Mims, B., Child, A., Milewicz, D.M., Sponseller, P., and Blanton, S.H. 1996. Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. J. Orthop. Res. 14:994–999.PubMedGoogle Scholar
  83. Miller, N.H., Mims, B., and Milewicz, D.M. 1994. The potential role of elastic fiber system in adolescent idiopathic scoliosis. J. Bone Joint Surg. Am. 76:1193–1206.Google Scholar
  84. Morais, T., Bernier, M., and Turcotte, F. 1985. Age- and sex-specific prevalence of scoliosis and the value of school screening programs. Am. J. Public Health. 75:1377–1380.PubMedGoogle Scholar
  85. Moreau, A., Wang, D.S., Forget, S., Azeddine, B., Angeloni, D., Fraschini, F., Labelle, H., Poitras, B., Rivard, C.H., and Grimard, G. 2004. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine 29:1772–1781.PubMedGoogle Scholar
  86. Nagin, D. 1999. Analyzing developmental trajectories: a semi-parametric, group-based approach. Psychol. Methods 4:139–177.Google Scholar
  87. Nagin, D.S., and Tremblay, R.E. 2001. Analyzing developmental trajectories of distinct but related behaviors: a group-based method. Psychol. Methods 6:18–34.PubMedGoogle Scholar
  88. Nair, R.P., Stuart, P.E., Nistor, I., Hiremagalore, R., Chia, N.V., Jenisch, S., Weichenthal, M., Abecasis, G.R., Lim, H.W., Christophers, E., Voorhees, J.J., and Elder, J.T. 2006. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78:827–851.PubMedGoogle Scholar
  89. Ocaka, L., Zhao, C., Reed, J.A., Ebenezer, N.D., Brice, G.,. Morley, T., Mehta, M., O’Dowd, J., Weber, J.L., Hardcastle, A.J., and Child, A.H. 2008. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J. Med. Genet. 45:87–92.PubMedGoogle Scholar
  90. Ogura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R.H., Achkar, J.P., Brant, S.R., Bayless, T.M., Kirschner, B.S., Hanauer, S.B., Nunez, G., and Cho, J.H. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606.PubMedGoogle Scholar
  91. Ohtsuka, Y., Yamagata, M., Arai, S., Kitahara, H.,and Minami, S. 1988. School screening for scoliosis by the Chiba University Medical School screening program. Results of 1.24 million students over an 8-year period. Spine 13:1251–1257.PubMedGoogle Scholar
  92. Pehrsson, K., Bake, B., Larsson, S., and Nachemson, A. 1991. Lung function in adult idiopathic scoliosis: a 20 year follow up. Thorax 46:474–478.PubMedGoogle Scholar
  93. Pinkel, D., and Albertson, D.G. 2005. Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37(Suppl):S11–S17.PubMedGoogle Scholar
  94. Qiu, X.S., Tang, N.L., Yeung, H.Y., Cheng, J.C., and Qiu, Y. 2008. Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis. Spine 33:2204–2207.PubMedGoogle Scholar
  95. Qiu, X.S., Tang, N.L., Yeung, H.Y., Lee, K.M., Hung, V.W., Ng, B.K., Ma, S.L., Kwok, R.H., Qin, L., Qiu, Y., and Cheng, J.C. 2007. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32:1748–1753.PubMedGoogle Scholar
  96. Quintana-Murci, L., Quach, H., Harmant, C., Luca, F., Massonnet, B., Patin, E., Sica, L., Mouguiama-Daouda, P., Comas, D., Tzur, S., Balanovsky, O., Kidd, K.K., Kidd, J.R., van der Veen, L., Hombert, J.M., Gessain, A., Verdu, P., Froment, A., Bahuchet, S., Heyer, E., Dausset, J., Salas, A., and Behar, D.M. 2008. Maternal traces of deep common ancestry and asymmetric gene flow between Pygmy hunter-gatherers and Bantu-speaking farmers. Proc. Natl. Acad. Sci. U. S. A. 105:1596–1601.PubMedGoogle Scholar
  97. Ratahi, E.D., Crawford. H.A., Thompson. J.M., and Barnes, M.J. 2002. Ethnic variance in the epidemiology of scoliosis in New Zealand. J. Pediatr. Orthop. 22:784–787.PubMedGoogle Scholar
  98. Richards, B.S., and Vitale, M.G. 2008. Screening for idiopathic scoliosis in adolescents. An information statement. J. Bone Joint Surg. Am. 90:195–198.PubMedGoogle Scholar
  99. Risch, N.J. 2000. Searching for genetic determinants in the new millennium. Nature 405:847–856.PubMedGoogle Scholar
  100. Riseborough, E.J., and Wynne-Davies, R. 1973. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J. Bone Joint Surg. Am. 55:974–982.PubMedGoogle Scholar
  101. Robin, G.C., and Cohen, T. 1975. Familial scoliosis. A clinical report. J. Bone Joint Surg. Br. 57:146–148.PubMedGoogle Scholar
  102. Rogala, E.J., Drummond, D.S., and Gurr, J. 1978. Scoliosis: incidence and natural history. A prospective epidemiological study. J. Bone Joint Surg. Am. 60:173–176.PubMedGoogle Scholar
  103. Rousie, D., Hache, J.C., Pellerin, P., Deroubaix, J.P., Van Tichelen, P., and Berthoz, A. 1999. Oculomotor, postural, and perceptual asymmetries associated with a common cause. Craniofacial asymmetries and asymmetries in vestibular organ anatomy. Ann .N. Y. Acad. Sci. 871:439–446.PubMedGoogle Scholar
  104. Rucker, R., Opsahl, W., Abbott, U., Greve, C., Kenney, C., and Stern, R. 1986. Scoliosis in chickens. A model for the inherited form of adolescent scoliosis. Am. J. Pathol. 123:585–588.PubMedGoogle Scholar
  105. Salehi, L.B., Mangino, M., De Serio, S., De Cicco, D., Capon, F., Semprini, S., Pizzuti, A., Novelli, G., and Dallapiccola, B. 2002. Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum. Genet. 111:401–404.PubMedGoogle Scholar
  106. Schuster, S.C. 2008. Next-generation sequencing transforms today’s biology. Nat. Methods 5:16–18.PubMedGoogle Scholar
  107. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y.H., Hicks, J., Spence, S.J., Lee, A.T., Puura, K., Lehtimaki, T., Ledbetter, D., Gregersen, P.K., Bregman, J., Sutcliffe, J.S., Jobanputra, V., Chung, W., Warburton, D., King, M.C., Skuse, D. Geschwind, D.H., Gilliam, T.C., Ye, K., and Wigler, M. 2007. Strong association of de novo copy number mutations with autism. Science 316:445–449.PubMedGoogle Scholar
  108. Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T.C., Trask, B., Patterson, N., Zetterberg, A., and Wigler, M. 2004. Large-scale copy number polymorphism in the human genome. Science 305:525–528PubMedGoogle Scholar
  109. Segil, C.M. 1974. The incidence of idiopathic scoliosis in the Bantu and White population groups in Johannesburg. J. Bone Joint Surg. Br. 56:393.Google Scholar
  110. Senderek, J., Bergmann, C., Weber, S., Ketelsen, U.P., Schorle, H., Rudnik-schoneborn, S., Buttner, R., Buchheim, E., and Zerres, K. (2003). Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/ 11p15. Hum. Mol. Genet. 12:349–356Google Scholar
  111. Shands, A.R., Jr., and Eisberg, H.B. 1955. The incidence of scoliosis in the state of Delaware; a study of 50,000 minifilms of the chest made during a survey for tuberculosis. J. Bone Joint Surg. Am. 37-A:1243–1249.PubMedGoogle Scholar
  112. Sharp, A.J., Locke, D.P., McGrath, S.D., Cheng, Z., Bailey, J.A., Vallente, R.U., Pertz, L.M., Clark, R.A., Schwartz, S., Segraves, R., Oseroff, V.V., Albertson, D.G., Pinkel, D., and Eichler, E.E. 2005. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77:78–88.PubMedGoogle Scholar
  113. Shohat, M., Shohat, T., Nitzan, M., Mimouni, M., Kedem, R., and Danon, Y.L. 1988. Growth and ethnicity in scoliosis. Acta Orthop. Scand. 59:310–313.PubMedGoogle Scholar
  114. Skogland, L.B., and Miller, J.A.A. 1978. The incidence of scoliosis in northern Norway. Acta Orthop. Scand. 49:635.Google Scholar
  115. Smyrnis, P.N., Valavanis, J., Alexopoulos, A., Siderakis, G., and Giannestras, N.J. 1979. School screening for scoliosis in Athens. J. Bone Joint Surg. Br. 61-B:215–217.PubMedGoogle Scholar
  116. Soucacos, P.N., Soucacos, P.K., Zacharis, K.C., Beris, A.E., and Xenakis, T.A. 1997. School-screening for scoliosis. A prospective epidemiological study in northwestern and central Greece. J. Bone Joint Surg. Am. 79:1498–1503.PubMedGoogle Scholar
  117. Staub, H.A. 1922. Eine skoliotikerfamilie. Ein Beitrag zur Frage der kongenitalen Skoliose und der Hereditat der Skoliosen. Z. Orthop. Chir. 43:1.Google Scholar
  118. Stirling, A.J., Howel, D., Millner, P.A., Sadiq, S., Sharples, D., and Dickson, R.A. 1996. Late-onset idiopathic scoliosis in children six to fourteen years old. A cross-sectional prevalence study. J. Bone Joint Surg. Am. 78:1330–1336.PubMedGoogle Scholar
  119. Sturtz, F.G., Latour, P., Mocquard, Y., Cruz, S., Fenoll, B., LeFur, J.M., Mabin, D., Chazot, G., and Vandenberghe, A. 1997. Clinical and electrophysiological phenotype of a homozygously duplicated Charcot-Marie-Tooth (type 1A) disease. Eur. Neurol. 38:26–30.PubMedGoogle Scholar
  120. Sucato, D.J. 2007. Spine deformity in spinal muscular atrophy. J. Bone Joint Surg. Am. 89 Suppl 1:148–154.PubMedGoogle Scholar
  121. Szappanos, L., Balogh, E., Szeszak, F., Olah, E., Nagy, Z., and Szepesi, K. 1997. Idiopathic scoliosis–new surgical methods or search for the reasons. Acta Chir. Hung. 36:343–345.PubMedGoogle Scholar
  122. Taylor, L.W. 1971. Kyphoscoliosis in a long-term selection experiment with chickens. Avian Dis. 15:376–390.Google Scholar
  123. Tuzun, E., Sharp, A.J., Bailey, J.A., Kaul, R., Morrison, V.A., Pertz, L.M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D., Olson, M.V., and Eichler, E.E. 2005. Fine-scale structural variation of the human genome. Nat. Genet. 37:727–732.PubMedGoogle Scholar
  124. Ulloa, F., and Briscoe, J. 2007. Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6:2640–2649.PubMedGoogle Scholar
  125. Vissers, L.E., van Ravenswaaij, C.M., Admiraal, R., Hurst, J.A., de vries, B.B., Janssen, I.M., van der vliet, W.A., Huys, E.H., de Jong, P.J., Hamel, B.C., Schoenmakers, E.F., Brunner, H.G., Veltman, J.A., and van Kessel, A.G. (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36:955–957Google Scholar
  126. Wiener-Vacher, S.R., and Mazda, K. 1998. Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J. Pediatr. 132:1028–1032.PubMedGoogle Scholar
  127. Williams, C.A., Gray, B.A., Hendrickson, J.E., Stone, J.W., and Cantu, E.S. (1989). Incidence of 15q deletions in the Angelman syndrome: a survey of twelve affected persons. Am. J. Med. Genet. 32:339–345.Google Scholar
  128. Willner, S., and Uden, A. 1982. A prospective prevalence study of scoliosis in southern Sweden. Acta Orthop. Scand. 53:233–237.PubMedGoogle Scholar
  129. Wise, C.A., Barnes, R., Gillum, J., Herring, J.A., Bowcock, A.M., and Lovett, M. 2000. Localization of susceptibility to familial idiopathic scoliosis. Spine 25:2372–2380.PubMedGoogle Scholar
  130. Wise, C.A., Gao, X., Shoemaker, S., Gordon, D., and Herring, J.A. 2008. Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Current Genomics 9:51–59.PubMedGoogle Scholar
  131. Wold, B., and Myers, R.M. 2008. Sequence census methods for functional genomics. Nat. Methods. 5:19–21.PubMedGoogle Scholar
  132. Wynne-Davies, R. 1968. Familial (idiopathic) scoliosis. A family survey. J. Bone Joint Surg. Br. 50:24–30.PubMedGoogle Scholar
  133. Wynne-Davies, R. 1975. Infantile idiopathic scoliosis. Causative factors, particularly in the first six months of life. J. Bone Joint Surg. Br. 57:138–141.PubMedGoogle Scholar
  134. Yamada, K., Miyamoto, K., Hosoe, H., Mizutani, M., and Shimizu, K. 2007. Scoliosis associated with Prader-Willi syndrome. Spine J. 7:345–348.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Texas Scottish Rite Hospital for ChildrenDallasUSA

Personalised recommendations