Progress in Understanding Genetic Contributions in Syndromic and Non-Syndromic Disorders Associated with Congenital, Neuromuscular, and Idiopathic Scoliosis

  • Philip F. Giampietro


Vertebral development occurs through a sequential and highly orchestrated series of interconnected events involving fibroblast growth factor (FGF), WNT, Notch, and transforming growth factor beta (TGF-β) receptor signaling pathways. Perturbations in these pathways can result in the development of both congenital (curvature of the spine due to an abnormality in vertebral formation) and idiopathic scoliosis (spinal curvature associated with normal vertebral morphology and in the absence of secondary causes such as Marfan syndrome, chromosome abnormality, or neuromuscular etiology). This chapter will focus on syndromic conditions that are associated with scoliosis and how understanding these conditions may contribute to identification of genes for idiopathic scoliosis. A large number of syndromes are associated with idiopathic scoliosis, resulting in connective tissue alteration or a neuromuscular basis for spinal curvature.


Adolescent Idiopathic Scoliosis Idiopathic Scoliosis Spinal Muscular Atrophy Marfan Syndrome Spinal Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Marshfield Clinic Research Foundation for its support through the assistance of Carol Beyer, Marie Fleisner, Dr. Ingrid Glurich, and Alice Stargardt in the preparation of this chapter.


  1. Abe, K., Yamamura, K., and Suzuki, M., 2000. Molecular and embryological characterization of a new transgene-induced null allele of mouse Brachyury locus. Mamm. Genome 11:238–240.PubMedCrossRefGoogle Scholar
  2. Alagille, D., Odièvre, M., Gautier, M., and Dommergues, J.P., 1975. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J. Pediatr. 86:63–71.PubMedCrossRefGoogle Scholar
  3. Azeddine, B., Letellier, K., Wang da, S., Moldovan, F., and Moreau, A., 2007. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 462:45–52.PubMedCrossRefGoogle Scholar
  4. Bagnall, K., Raso, V.J., Moreau, M., Mahood, J., Wang, X., and Zhao, J. 1999. The effects of melatonin therapy on the development of scoliosis after pinealectomy in the chicken. J. Bone. Joint. Surg. Am. 81:91–99.CrossRefGoogle Scholar
  5. Baldwin, K.M., and Haddad, F. 2002. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am. J. Phys. Med. Rehabil. 81(11 Suppl):S40–S51.PubMedCrossRefGoogle Scholar
  6. Band, M.R., Olmstead, C., Everts, R.E., Liu, Z.L., and Lewin, H.A., 2002. A 3800 gene microarray for cattle functional genomics: comparison of gene expression in spleen, placenta, and brain. Anim. Biotechnol. 13:163–172.PubMedCrossRefGoogle Scholar
  7. Bashiardes, S., Veile, R., Allen, M., Wise, C.A., Dobbs, M., Morcuende, J.A., Szappanos, L., Herring, J.A., Bowcock, A.M., and Lovett, M. 2004. SNTG1, the gene encoding gamma1-syntrophin: a candidate gene for idiopathic scoliosis. Hum. Genet. 115:81–89.PubMedCrossRefGoogle Scholar
  8. Belloni, E., Martucciello, G., Verderio, D., Ponti, E., Seri, M., Jasonni, V., Torre, M., Ferrari, M., Tsui, L.C., and Scherer, S.W. 2000. Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am. J. Hum. Genet. 66:312–319.PubMedCrossRefGoogle Scholar
  9. Bengtsson, B.E., Larsson, A., Bengtsson, A., and Renberg, L. 1988. Sublethal effects of tetrachloro-1,2-benzoquinone–a component in bleachery effluents from pulp mills–on vertebral quality and physiological parameters in fourhorn sculpin. Ecotoxicol. Environ. Saf. 15:62–71.PubMedCrossRefGoogle Scholar
  10. Bi, W., Ohyama, T., Nakamura, H., Yan, J., Visvanathan, J., Justice, M.J., and Lupski, J.R. 2005. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith-Magenis syndrome. Hum. Mol. Genet. 14:983–995.PubMedCrossRefGoogle Scholar
  11. Bicknell, L.S., Morgan, T., Bonafé, L., Wessels, M.W., Bialer, M.G., Willems, P.J., Cohn, D.H., Krakow, D., and Robertson, S.P. 2005. Mutations in FLNB cause boomerang dysplasia. J. Med. Genet. 42:e43.PubMedCrossRefGoogle Scholar
  12. Blumel, J., Evans, E.B., and Eggers, G.W. 1959. Partial and complete agenesis or malformation of the sacrum with associated anomalies; etiologic and clinical study with special reference to heredity; a preliminary report. J. Bone Joint Surg. Am. 41A:497–518.Google Scholar
  13. Bogani, D., Warr, N., Elms, P., Davies, J., Tymowska-Lalanne, Z., Goldsworthy, M., Cox, R.D., Keays, D.A., Flint, J., Wilson, V., Nolan, P., and Arkell, R. 2004. New semidominant mutations that affect mouse development. Genesis 40:109–117.PubMedCrossRefGoogle Scholar
  14. Botto, L.D., Khoury, M.J., Mastroiacovo, P., Castilla, E.E., Moore, C.A., Skjaerven, R., Mutchinick, O.M., Borman, B., Cocchi, G., Czeizel, A.E., Goujard, J., Irgens, L.M., Lancaster, P.A., Martínez-Frías, M.L., Merlob, P., Ruusinen, A., Stoll, C., and Sumiyoshi, Y. 1997. The spectrum of congenital anomalies of the VATER association: an international study. Am. J. Med. Genet. 71:8–15.PubMedCrossRefGoogle Scholar
  15. Burck, U. 1983. Genetic aspects of hemifacial microsomia. Hum. Genet. 64, 291–296.PubMedCrossRefGoogle Scholar
  16. Callewaert, B., Malfait, F., Loeys, B., De Paepe, A., 2008. Ehlers-Danlos syndromes and Marfan syndrome. Best Pract. Res. Clin. Rheumatol. 22:165–189.PubMedCrossRefGoogle Scholar
  17. Byers, P.H. 2004. Determination of the molecular basis of Marfan syndrome: a growth industry. J. Clin. Invest. 114:161–163.PubMedGoogle Scholar
  18. Cassidy, S.B., and Driscoll, D.J., 2009. Prader-Willi syndrome. Eur. J. Hum. Genet. 17:3–13.PubMedCrossRefGoogle Scholar
  19. Chen, Q., Zhao, H., Zhao, J., Pacicca, D.M., Fassler, R., and Dallas, S.L. 2008. Conditional deletion of fibronectin results in a scoliosis-like phenotype. ASBMR 23:S15.Google Scholar
  20. Chesley, P. 1935. Development of the short-tailed mutant in the house mouse. J. Exp. Zool. 70:429–459.CrossRefGoogle Scholar
  21. Clarke, R.A., Singh, S., McKenzie, H., Kearsley, J.H., and Yip, M.Y. 1995. Familial Klippel-Feil syndrome and paracentric inversion inv(8)(q22.2q23.3). Am. J. Hum. Genet. 57, 1364–1370.PubMedGoogle Scholar
  22. Clarke, R.A., Catalan, G., Diwan, A.D., and Kearsley, J.H. 1998. Heterogeneity in Klippel-Feil syndrome: a new classification. Pediatr. Radiol. 28:967–974.PubMedCrossRefGoogle Scholar
  23. Cohen, J. 2007. Genomics. DNA duplications and deletions help determine health. Science 317:1315–1317.PubMedCrossRefGoogle Scholar
  24. Colliton, R.P., Bason, L., Lu, F.M., Piccoli, D.A., Krantz, I.D., and Spinner, N.B. 2001. Mutation analysis of Jagged1 (JAG1) in Alagille syndrome patients. Hum. Mutat. 17:151–152.PubMedCrossRefGoogle Scholar
  25. Crétolle, C., Pelet, A., Sanlaville, D., Zérah, M., Amiel, J., Jaubert, F., Révillon, Y., Baala, L., Munnich, A., Nihoul-Fékété, C., and Lyonnet, S. 2008. Spectrum of HLXB9 gene mutations in Currarino syndrome and genotype-phenotype correlation. Hum. Mutat. 29:903–910.PubMedCrossRefGoogle Scholar
  26. Currarino, G., Coln, D., and Votteler, T. 1981. Triad of anorectal, sacral, and presacral anomalies. Am. J. Roentgenol. 137:395–398.Google Scholar
  27. De Paepe, A., Devereux, R.B., Dietz, H.C., Hennekam, R.C., and Pyeritz, R.E. 1996. Revised diagnostic criteria for the Marfan syndrome. Am. J. Med. Genet. 62:417–426.PubMedCrossRefGoogle Scholar
  28. Dietrich, S., and Gruss, P. 1995. Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev. Biol. 167:529–548.PubMedCrossRefGoogle Scholar
  29. Dietz, H.C., Cutting, G.R., Pyeritz, R.E., Maslen, C.L., Sakai, L.Y., Corson, G.M., Puffenberger, E.G., Hamosh, A., Nanthakumar, E.J., Curristin, S.M., Stetten, G., Meyers, D.A., and Francomano, C.A. 1991. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339.PubMedCrossRefGoogle Scholar
  30. Do, T. 2002. Orthopedic management of the muscular dystrophies. Curr. Opin. Pediatr. 14:50–53.PubMedCrossRefGoogle Scholar
  31. Edwards, M.J. 1986. Hyperthermia as a teratogen: a review of experimental studies and their clinical significance. Teratog. Carcinog. Mutagen. 6:563–582.PubMedCrossRefGoogle Scholar
  32. Emerick, K.M., Rand, E.B., Goldmuntz, E., Krantz, I.D., Spinner, N.B., and Piccoli, D.A. 1999. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829.PubMedCrossRefGoogle Scholar
  33. Ewart-Toland, A., Yankowitz, J., Winder, A., Imagire, R., Cox, V.A., Aylsworth, A.S., and Golabi, M. 2000. Oculoauriculovertebral abnormalities in children of diabetic mothers. Am. J. Med. Genet. 90:303–309.PubMedCrossRefGoogle Scholar
  34. Farley, F.A., Loder, R.T., Nolan, B.T., Dillon, M.T., Frankenburg, E.P., Kaciroti, N.A., Miller, J.D., Goldstein, S.A., and Hensinger, R.N. 2001. Mouse model for thoracic congenital scoliosis. J. Pediatr. Orthop. 21:537–540.PubMedCrossRefGoogle Scholar
  35. Feil, A. 1919. L’absence et la diminution Des vertebres cervicales. Thesis, Libraire Litteraire et Medicale, Paris.Google Scholar
  36. Fischer, S., Lüdecke, H.J., Wieczorek, D., Böhringer, S., Gillessen-Kaesbach, G., and Horsthemke, B. 2006. Histone acetylation dependent allelic expression imbalance of BAPX1 in patients with the oculo-auriculo-vertebral spectrum. Hum. Mol. Genet. 15:581–587.PubMedCrossRefGoogle Scholar
  37. Francomano, C.A., Liberfarb, R.M., Hirose, T., Maumenee, I.H., Streeten, E.A., Meyers, D.A., and Pyeritz, R.E. 1987. The Stickler syndrome: evidence for close linkage to the structural gene for type II collagen. Genomics 1:293–296.PubMedCrossRefGoogle Scholar
  38. Fukushima, Y., Ohashi, H., Wakui, K., Nishimoto, H., Sato, M., and Aihara, T. 1995. De novo apparently balanced reciprocal translocation between 5q11.2 and 17q23 associated with Klippel-Feil anomaly and type A1 brachydactyly. Am. J. Med. Genet. 57, 447–449.PubMedCrossRefGoogle Scholar
  39. Garcia-Barcelo, M.M., Wong, K.K., Lui, V.C., Yuan, Z.W., So, M.T., Ngan, E.S., Miao, X.P., Chung, P.H., Khong, P.L., and Tam, P.K. 2008. Identification of a HOXD13 mutation in a VACTERL patient. Am. J. Med. Genet. A 146A:3181–3185.PubMedCrossRefGoogle Scholar
  40. Ghebranious, N., Blank, R.D., Raggio, C.L., Staubli, J., McPherson, E., Ivacic, L., Rasmussen, K., Jacobsen, F.S., Faciszewski, T., Burmester, J.K., Pauli, R.M., Boachie-Adjei, O., Glurich, I., and Giampietro, P.F. 2008. A missense T(Brachyury) mutation contributes to vertebral malformations. J. Bone Miner. Res. 23:1576–1583.PubMedCrossRefGoogle Scholar
  41. Ghebranious, N., Burmester, J.K., Glurich, I., McPherson, E., Ivacic, L., Kislow, J., Rasmussen, K., Kumar, V., Raggio, C.L., Blank, R.D., Jacobsen, F.S., Faciszewski, T., Womack, J., and Giampietro, P.F. 2006. Evaluation of SLC35A3 as a candidate gene for human vertebral malformations. Am. J. Med. Genet. 140:1346–1348.PubMedCrossRefGoogle Scholar
  42. Ghebranious, N., Raggio, C.L., Blank, R.D., McPherson, E., Burmester, J.K., Ivacic, L., Rasmussen, K., Kislow, J., Glurich, I., Jacobsen, F.S., Faciszewski, T., Pauli, R.M., Boachie-Adjei, O., and Giampietro, P.F. 2007. Lack of evidence of WNT3A as a candidate gene for congenital vertebral malformations. Scoliosis 2:13.PubMedCrossRefGoogle Scholar
  43. Giampietro, P.F., Blank, R.D., Raggio, C.L., Merchant, S., Jacobsen, F.S., Faciszewski, T., Shukla, S.K., Greenlee, A.R., Reynolds, C., and Schowalter, D.B. 2003. Congenital and idiopathic scoliosis: clinical and genetic aspects. Clin. Med. Res. 1:125–136.PubMedCrossRefGoogle Scholar
  44. Giampietro, P.F., Raggio, C.L., and Blank, R.D. 1998. Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am. J. Med. Genet. 83:164–177.CrossRefGoogle Scholar
  45. Giampietro, P.F., Raggio, C.L., Reynolds, C., Ghebranious, N., Burmester, J.K., Glurich, I., Rasmussen, K., McPherson, E., Pauli, R.M., Shukla, S.K., Merchant, S., Jacobsen, F.S., Faciszewski, T., and Blank, R.D. 2006. DLL3 as a candidate gene for vertebral malformations. Am. J. Med. Genet. A 140:2447–2453.PubMedGoogle Scholar
  46. Giampietro, P.F., Raggio, C.L., Reynolds, C.E., Shukla, S.K., McPherson, E., Ghebranious, N., Jacobsen, F.S., Kumar, V., Faciszewski, T., Pauli, R.M., Rasmussen, K., Burmester, J.K., Zaleski, C., Merchant, S., David, D., Weber, J.L., Glurich, I., and Blank, R.D. 2005. An analysis of PAX1 in the development of vertebral malformations. Clin. Genet. 68:448–453.PubMedCrossRefGoogle Scholar
  47. Giampietro, P.F., Dunwoodie, S.L., Kusumi, K., Pourquié, O., Tassy, O., Offiah, A.C., Cornier, A.S., Alman, B.A., Blank, R.D., Raggio, C.L., Glurich, I., and Turnpenny, P.D. 2009. Molecular diagnosis of vertebral segmentation disorders in humans. Expert Opin. Med. Diagn. 2:1107–1121CrossRefGoogle Scholar
  48. Goto, M., Nishimura, G., Nagai, T., Yamazawa, K., and Ogata, T. 2006. Familial Klippel-Feil anomaly and t(5;8)(q35.1;p21.1) translocation. Am. J. Med. Genet. A 140, 1013–1015.PubMedGoogle Scholar
  49. Greenberg, F., Guzzetta, V., Montes de Oca-Luna, R., Magenis, R.E., Smith, A.C., Richter, S.F., Kondo, I., Dobyns, W.B., Patel, P.I., and Lupski, J.R. 1991. Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p11.2). Am. J. Hum. Genet. 49:1207–1218.PubMedGoogle Scholar
  50. Greenberg, F., Lewis, R.A., Potocki, L., Glaze, D., Parke, J., Killian, J., Murphy, M.A., Williamson, D., Brown, F., Dutton, R., McCluggage, C., Friedman, E., Sulek, M., and Lupski, J.R. 1996. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am. J. Med. Genet. 62:247–254.PubMedCrossRefGoogle Scholar
  51. Hanold, K.C. 1986. Teratogenic potential of valproic acid. J. Obstet. Gynecol. Neonatal Nurs. 15:111–116.PubMedCrossRefGoogle Scholar
  52. Harlow, C.L., Partington, M.D., and Thieme, G.A. 1995. Lumbosacral agenesis: clinical characteristics, imaging, and embryogenesis. Pediatr. Neurosurg. 23:140–147.PubMedCrossRefGoogle Scholar
  53. Harrison, S.M., Houzelstein, D., Dunwoodie, S.L., and Beddington, R.S. 2000. Sp5, a new member of the Sp1 family, is dynamically expressed during development and genetically interacts with Brachyury. Dev. Biol. 227:358–372.PubMedCrossRefGoogle Scholar
  54. Hensinger, R.N., and MacEwen, C.D. 1982. In Congenital Anomalies of the Spine, eds. R. Rothman and F. Simeone, pp. 216–233. Philadelphia: W.B. SaundersGoogle Scholar
  55. Herrmann, J., France, T.D., Spranger, J.W., Opitz, J.M., and Wiffler, C. 1975. The Stickler syndrome (hereditary arthroophthalmopathy). Birth Defects Orig. Artic. Ser. 11, 76–103.PubMedGoogle Scholar
  56. Hickory, W., Nanda, R., and Catalanotto, F.A. 1979. Fetal skeletal malformations associated with moderate zinc deficiency during pregnancy. J. Nutr. 109:883–891.PubMedGoogle Scholar
  57. Hingorani, M., Nischal, K.K., Davies, A., Bentley, C., Vivian, A., Baker, A.J., Mieli-Vergani, G., Bird, A.C., and Aclimandos, W.A. 1999. Ocular abnormalities in Alagille syndrome. Ophthalmology 106:330–337.PubMedCrossRefGoogle Scholar
  58. Holm, V.A., Cassidy, S.B., Butler, M.G., Hanchett, J.M., Greenswag, L.R., Whitman, B.Y., and Greenberg, F. 1993. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91:398–402.PubMedGoogle Scholar
  59. Honeywell, C., Langer, L., and Allanson, J. 2002. Spondylocarpotarsal synostosis with epiphyseal dysplasia. Am. J. Med. Genet. 109:318–322.PubMedCrossRefGoogle Scholar
  60. Hutchinson, J. 1894. Deformity of shoulder girdle. Br. Med. J. 1:634–635.Google Scholar
  61. Isidor, B., Cormier-Daire, V., Le Merrer, M., Lefrancois, T., Hamel, A., Le Caignec, C., David, A., and Jacquemont, S. 2008. Autosomal dominant spondylocarpotarsal synostosis syndrome: phenotypic homogeneity and genetic heterogeneity. Am. J. Med. Genet. A 146A:1593–1597.PubMedCrossRefGoogle Scholar
  62. Jaskwhich, D., Ali, R.M., Patel, T.C., and Green, D.W. 2000. Congenital scoliosis. Curr. Opin. Pediatr. 12:61–66.PubMedCrossRefGoogle Scholar
  63. Jensen, L.E., Barbaux, S., Hoess, K., Fraterman, S., Whitehead, A.S., and Mitchell, L.E. 2004. The human T locus and spina bifida risk. Hum. Genet. 115:475–482.PubMedCrossRefGoogle Scholar
  64. Kadler, K.E., Hill, A., Canty-Laird, E.G., 2008. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20:495–501.PubMedCrossRefGoogle Scholar
  65. Kamath, B.M., Loomes, K.M., Oakey, R.J., Emerick, K.E., Conversano, T., Spinner, N.B., Piccoli, D.A., and Krantz, I.D. 2002. Facial features in Alagille syndrome: specific or cholestasis facies? Am. J. Med. Genet. 112:163–170.PubMedCrossRefGoogle Scholar
  66. Katz, L.A., Schultz, R.E., Semina, E.V., Torfs, C.P., Krahn, K.N., and Murray, J.C. 2004. Mutations in PITX2 may contribute to cases of omphalocele and VATER-like syndromes. Am. J. Med. Genet. A 130A:277–283.PubMedCrossRefGoogle Scholar
  67. Kispert, A., and Herrmann, B.G. 1994. Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev. Biol. 161:179–193.PubMedCrossRefGoogle Scholar
  68. Klippel, M., and Feil, A. 1912. Un cas d’absence des vertebres cervicales. Nouv. Iconog. Salpetriere. 25:223–250.Google Scholar
  69. Knudson, A.G. Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. 68:820–823.PubMedCrossRefGoogle Scholar
  70. Krakow, D., Robertson, S.P., King, L.M., Morgan, T., Sebald, E.T., Bertolotto, C., Wachsmann-Hogiu, S., Acuna, D., Shapiro, S.S., Takafuta, T., Aftimos, S., Kim, C.A., Firth, H., Steiner, C.E., Cormier-Daire, V., Superti-Furga, A., Bonafe, L., Graham, J.M., Jr., Grix, A., Bacino, C.A., Allanson, J., Bialer, M.G., Lachman, R.S., Rimoin, D.L., and Cohn, D.H. 2004. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat. Genet. 36:5–10.CrossRefGoogle Scholar
  71. Ladi, E., Nichols, J.T., Ge, W., Miyamoto, A., Yao, C., Yang, L.T., Boulter, J., Sun, Y.C., Kitner, C., and Weinmaster G. 2005. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Bio. 170: 983–992.CrossRefGoogle Scholar
  72. Lebepe-Mazur, S., Bal, H., Hopmans, E., Murphy, P., and Hendrich, S. 1995. Fumonisin B1 is fetotoxic in rats. Vet. Hum. Toxicol. 37:126–130.PubMedGoogle Scholar
  73. Lee, S.K., Jurata, L.W., Funahashi, J., Ruiz, E.C., and Pfaff, S.L. 2004. Analysis of embryonic motoneuron gene regulation: derepression of general activators function in concert with enhancer factors. Development 131:3295–3306.PubMedCrossRefGoogle Scholar
  74. Lee, S.K., and Pfaff, S.L. 2003. Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38:731–745.PubMedCrossRefGoogle Scholar
  75. Lewis, D.P., Van Dyke, D.C., Stumbo, P.J., and Berg, M.J. 1998. Drug and environmental factors associated with adverse pregnancy outcomes. Part II: improvement with folic acid. Ann. Pharmacother. 32:947–961.PubMedCrossRefGoogle Scholar
  76. Liberfarb, R.M., Levy, H.P., Rose, P.S., Wilkin, D.J., Davis, J., Balog, J.Z., Griffith, A.J., Szymko-Bennett, Y.M., Johnston, J.J., Francomano, C.A., Tsilou, E., and Rubin, B.I. 2003. The Stickler syndrome: genotype/phenotype correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II collagen gene locus COL2A1. Genet. Med. 5:21–27.PubMedCrossRefGoogle Scholar
  77. Lyon, M.F. 1996. An additional type of male sterility and inherited urinary obstruction in mice with the t-haplotype th7. Genet. Res. 67:249–256.PubMedCrossRefGoogle Scholar
  78. Machida, M., Murai, I., Miyashita, Y., Dubousset, J., Yamada, T., and Kimura, J. 1999. Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24:1985–1989.PubMedCrossRefGoogle Scholar
  79. Malfait, F., Hakim, A.J., De Paepe, A., and Grahame, R. 2006. The genetic basis of the joint hypermobility syndromes. Rheumatology (Oxford) 45:502–507.CrossRefGoogle Scholar
  80. Manaligod, J.M., Bauman, N.M., Menezes, A.H., and Smith, R.J. 1999. Cervical vertebral anomalies in patients with anomalies of the head and neck. Ann. Otol. Rhinol. Laryneol. 108:925–933.Google Scholar
  81. Marotta, M., Sarria, Y., Ruiz-Roig, C., Munell, F., and Roig-Quilis, M. 2007. Laser microdissection-based expression analysis of key genes involved in muscle regeneration in mdx mice. Neuromuscul. Disord. 17:707–718.PubMedCrossRefGoogle Scholar
  82. McCarrey, J.R., Abbott, U.K., Benson, D.R., and Riggins, R.S. 1981. Genetics of scoliosis in chickens. J. Hered. 72:6–10.PubMedGoogle Scholar
  83. McDaniell, R., Warthen, D.M., Sanchez-Lara, P.A., Pai, A., Krantz, I.D., Piccoli, D.A., and Spinner, N.B. 2006. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79:169–173.PubMedCrossRefGoogle Scholar
  84. McGaughran, J.M., Oates, A., Donnai, D., Read, A.P., and Tassabehji, M. 2003. Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur. J. Hum. Genet. 11, 468–474.PubMedCrossRefGoogle Scholar
  85. McMaster, M., and Ohtsuka, K. 1982. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J. Bone Joint Surg. Am. 64:1128–1147.PubMedGoogle Scholar
  86. 2.
    McMaster, M.J. and Singh, H. 1999. Natural history of congenital kyphosis and kyphoscoliosis. A study of one hundred and twelve patients. J. Bone Joint Surg. Am. 1999 81:1367–1383.PubMedGoogle Scholar
  87. Merello, E., De Marco, P., Mascelli, S., Raso, A., Calevo, M.G., Torre, M., Cama, A., Lerone, M., Martucciello, G., and Capra, V. 2006. HLXB9 homeobox gene and caudal regression syndrome. Birth Defects Res. A Clin. Mol. Teratol. 76:205–209.PubMedCrossRefGoogle Scholar
  88. Miller, N.H., Mims, B., Child, A., Milewicz, D.M., Sponseller, P., and Blanton, S.H. 1996. Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. J. Orthop. Res. 14:994–999.PubMedCrossRefGoogle Scholar
  89. Moreau, A., Wang, D.S., Forget, S., Azeddine, B., Angeloni, D., Fraschini, F., Labelle, H., Poitras, B., Rivard, C.H., and Grimard, G. 2004. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine 29:1772–1781.PubMedCrossRefGoogle Scholar
  90. Moreno, T.A., and Kitner, C. 2004. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev. Cell 6:205–218.PubMedCrossRefGoogle Scholar
  91. Morrison, K., Papapetrou, C., Attwood, J., Hol, F., Lynch, S.A., Sampath, A., Hamel, B., Burn, J., Sowden, J., Stott, D., Mariman, E., and Edwards, Y.H. 1996. Genetic mapping of the human homologue (T) of mouse T(Brachyury) and a search for allele association between human T and spina bifida. Hum. Mol. Genet. 5:669–674.PubMedCrossRefGoogle Scholar
  92. Muccielli, M.L., Martinez, S., Pattyn, A., Goridis, C., and Brunet, J.F. 1996. Otlx2, an Otx-related homeobox gene expressed in the pituitary gland and in a restricted pattern in the forebrain. Mol. Cell. Neurosci. 8:258–271.PubMedCrossRefGoogle Scholar
  93. Nakano, T., Windrem, M., Zappavigna, V., and Goldman, S.A. 2005. Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons. Dev. Biol. 283:474–485.PubMedCrossRefGoogle Scholar
  94. Neptune, E.R., Frischmeyer, P.A., Arking, D.E., Myers, L., Bunton, T.E., Gayraud, B., Ramirez, F., Sakai, L.Y., and Dietz, H.C. 2003. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33:407–411.PubMedCrossRefGoogle Scholar
  95. Odent, T., Accadbled, F., Koureas, G., Cournot, M., Moine, A., Diene, G., Molinas, C., Pinto, G., Tauber, M., Gomes, B., de Gauzy, J.S., and Glorion, C. 2008. Scoliosis in patients with Prader-Willi syndrome. Pediatrics 122:e499–503.PubMedCrossRefGoogle Scholar
  96. Ozçelik, T., Leff, S., Robinson, W., Donlon, T., Lalande, M., Sanjines, E., Schinzel, A., and Francke, U. 1992. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nat. Genet. 2:265–269.PubMedCrossRefGoogle Scholar
  97. Pang, D. 1993. Sacral agenesis and caudal spinal cord malformations. Neurosurgery 32: 755–778.PubMedCrossRefGoogle Scholar
  98. Papagrigorakis, M.J., Synodinos, P.N., Daliouris, C.P., and Metaxotou, C. 2003. De novo inv(2)(p12q34) associated with Klippel-Feil anomaly and hypodontia. Eur. J. Pediatr. 162:594–597.PubMedCrossRefGoogle Scholar
  99. Papapetrou, C., Drummond, F., Reardon, W., Winter, R., Spitz, L., and Edwards, Y.H. 1999. A genetic study of the human T gene and its exclusion as a major candidate gene for sacral agenesis with anorectal atresia. J. Med. Genet. 36:208–213.PubMedGoogle Scholar
  100. Park, C.H., Pruitt, J.H., and Bennett, D. 1989. A mouse model for neural tube defects: the curtailed (Tc) mutation produces spina bifida occulta in Tc/+ animals and spina bifida with meningomyelocele in Tc/t. Teratology 39:303–312.PubMedCrossRefGoogle Scholar
  101. Phelan, M.C., Rogers, R.C., Clarkson, K.B., Bowyer, F.P., Levine, M.A., Estabrooks, L.L., Severson, M.C., and Dobyns, W.B. 1995. Albright hereditary osteodystrophy and del(2) (q37.3) in four unrelated individuals. Am. J. Med. Genet. 58:1–7.Google Scholar
  102. Phelan, M.C., Rogers, R.C., Clarkson, K.B., Bowyer, F.P., Levine, M.A., Estabrooks, L.L., Severson, M.C., and Dobyns,W.B. 1995. Albright hereditary osteodystrophy and del(2) (q37.3) in four unrelated individuals. Am. J. Med. Genet. 58:1–7.PubMedCrossRefGoogle Scholar
  103. Phelan, M.C. 2008. Deletion 22q13.3 syndrome. Orphanet J. Rare Dis. 3:14.PubMedCrossRefGoogle Scholar
  104. Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y., Dairkee, S.H., Ljung, B.M., Gray, J.W., and Albertson, D.G. 1998. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20:207–211.PubMedCrossRefGoogle Scholar
  105. Poswillo, D. 1973. The pathogenesis of the first and second branchial arch syndrome. Oral Surg. Oral Med. Oral. Pathol. 35:302–328.PubMedCrossRefGoogle Scholar
  106. Potocki, L., Glaze, D., Tan, D.X., Park, S.S., Kashork, C.D., Shaffer, L.G., Reiter, R.J., and Lupski, J.R. 2000. Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J. Med. Genet. 37:428–433.PubMedCrossRefGoogle Scholar
  107. Prader, A., Labhart, A., and Willi, H. 1956. Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myatonieartigem Zustand im Neugeborenenalter. Schweiz. Med. Wochenschr. 86:1260–1261.Google Scholar
  108. Pyeritz, R.E., and McKusick, V.A. 1979. The Marfan syndrome: diagnosis and management. N. Engl. J. Med. 300:772–777.PubMedCrossRefGoogle Scholar
  109. Richter, B., Schultealbert, A.H., and Koch, M.C. 2002. Human T and risk for neural tube defects. J. Med. Genet. 39:E14.PubMedCrossRefGoogle Scholar
  110. Rollnick, B.R., Kaye, C.I., Nagatoshi, K., Hauck, W., and Martin, A.O. 1987. Oculoauriculovertebral dysplasia and variants: phenotypic characteristics of 294 patients. Am. J. Med. Genet. 26:361–375.PubMedCrossRefGoogle Scholar
  111. Rose, P.S., Ahn, N.U., Levy, H.P., Ahn, U.M., Davis, J., Liberfarb, R.M., Nallamshetty, L., Sponseller, P.D., and Francomano, C.A. 2001. Thoracolumbar spinal abnormalities in Stickler syndrome. Spine 26:403–409.PubMedCrossRefGoogle Scholar
  112. Ross, A.J., Ruiz-Perez, V., Wang, Y., Hagan, D.M., Scherer, S., Lynch, S.A., Lindsay, S., Custard, E, Belloni, E., Wilson, D.I., Wadey, R., Goodman, F., Orstavik, K.H., Monclair, T., Robson, S., Reardon, W., Burn, J., Scambler, P., and Strachan, T. 1998. A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat. Genet. 20:358–361.PubMedCrossRefGoogle Scholar
  113. Sáenz, A., Azpitarte, M., Armañanzas, R., Leturcq, F., Alzualde, A., Inza, I., García-Bragado, F., De la Herran, G., Corcuera, J., Cabello, A., Navarro, C., De la Torre, C., Gallardo, E., Illa, I., and de Munain, A.L. 2008. Gene expression profiling in limb-girdle muscular dystrophy 2A. PLoS ONE 3:e3750.PubMedCrossRefGoogle Scholar
  114. Samartzis, D.D., Herman, J., Lubicky, J.P., and Shen, F.H. 2006. Classification of congenitally fused cervical patterns in Klippel-Feil patients: epidemiology and role in the development of cervical spine-related symptoms. Spine 31:E798–804.PubMedCrossRefGoogle Scholar
  115. Schalkwijk, J., Zweers, M.C., Steijlen, P.M., Dean, W.B., Taylor, G., van Vlijmen, I.M., van Haren, B., Miller, W.L., and Bristow, J. 2001. A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N. Engl. J. Med. 345:1167–1175.PubMedCrossRefGoogle Scholar
  116. Searle, A.G. 1966. Curtailed, a new dominant T-allele in the house mouse. Genet. Res. 7:86–95.PubMedCrossRefGoogle Scholar
  117. Shands, A.R. Jr., and Eisberg, H.B. 1955. The incidence of scoliosis in the state of Delaware: a study of 50,000 minifilms of the chest made during a survey for tuberculosis. J. Bone Joint Surg. Am. 37-A:1243–1249.PubMedGoogle Scholar
  118. Shields, D.C., Ramsbottom, D., Donoghue, C., Pinjon, E., Kirke, P.N., Molloy, A.M., Edwards, Y.H., Mills, J.L., Mynett-Johnson, L., Weir, D.G., Scott, J.M., and Whitehead, A.S. 2000. Association between historically high frequencies of neural tube defects and the human T homologue of mouse T (Brachyury). Am. J. Med. Genet. 92:206–211.PubMedCrossRefGoogle Scholar
  119. Shores, J., Berger, K.R., Murphy, E.A., and Pyeritz, R.E. 1994. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N. Engl. J. Med. 330:1335–1341.PubMedCrossRefGoogle Scholar
  120. Sköld, A.C., Wellfelt, K., and Danielsson, B.R. 2001. Stage-specific skeletal and visceral defects of the I(Kr)-blocker almokalant: further evidence for teratogenicity via a hypoxia-related mechanism. Teratology 64:292–300.PubMedCrossRefGoogle Scholar
  121. Slager, R.E., Newton, T.L., Vlangos, C.N., Finucane, B., and Elsea, S.H. 2003. Mutations in RAI1 associated with Smith-Magenis syndrome. Nat. Genet. 33:466–468.PubMedCrossRefGoogle Scholar
  122. Smith, A.C., Dykens, E., and Greenberg, F. 1998. Behavioral phenotype of Smith-Magenis syndrome (del 17p11.2). Am. J. Med. Genet. 81:179–185.PubMedCrossRefGoogle Scholar
  123. Smith, A.C., McGavran, L., Robinson, J., Waldstein, G., Macfarlane, J., Zonona, J., Reiss, J., Lahr, M., Allen, L., and Magenis, E. 1986. Interstitial deletion of (17)(p11.2p11.2) in nine patients. Am. J. Med. Genet. 24:393–414.PubMedCrossRefGoogle Scholar
  124. Snead, M.P., Yates, J.R., Pope, F.M., Temple, I.K., and Scott, J.D. 1996a. Masked confirmation of linkage between type 1 congenital vitreous anomaly and COL 2A1 in Stickler syndrome. Graefes. Arch. Clin. Exp. Ophthalmol. 234:720–721.PubMedCrossRefGoogle Scholar
  125. Snead, M.P., Yates, J.R., Williams, R., Payne, S.J., Pope, F.M., and Scott, J.D. 1996b. Stickler syndrome type 2 and linkage to the COL 11A1 gene. Ann. N. Y. Acad. Sci. 785:331–332.PubMedCrossRefGoogle Scholar
  126. Speer, M.C., Melvin, E.C., Viles, K.D., Bauer, K.A., Rampersaud, E., Drake, C., George, T.M., Enterline, D.S., Mackey, J.F., Worley, G., Gilbert, J.R., and Nye, J.S. 2002. NTD Collaborative Group. Neural Tube Defects. T locus shows no evidence for linkage disequilibrium or mutation in American Caucasian neural tube defect families. Am. J. Med. Genet. 110: 215–218.PubMedCrossRefGoogle Scholar
  127. Steiner, C.E., Torriani, M., Norato, D.Y., and Marques-de-Faria, A.P. 2000. Spondylocarpotarsal synostosis with ocular findings. Am. J. Med. Genet. 91:131–134.PubMedCrossRefGoogle Scholar
  128. Steinmann, B., Royce, P.M., and Superti-Furga, A. 2002. The Ehlers-Danlos syndrome. In Connective Tissue and Its Heritable Disorders: Molecular, Genetic and Medical Aspects, 2nd Ed., eds. P.M. Royce and B. Steinmann, pp. 431–523. New York: Wiley-LissGoogle Scholar
  129. Stoll, C., Viville, B., Treisser, A., and Gasser, B. 1998. A family with dominant oculoauriculovertebral spectrum. Am. J. Med. Genet. 78:345–349.PubMedCrossRefGoogle Scholar
  130. Stossel, T.P., Condeelis, J., Cooley, L., Hartwig, J.H., Noegel, A., Schleicher, M., and Shapiro, S.S. 2001. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell. Biol. 2:138–145.PubMedCrossRefGoogle Scholar
  131. Tassabehji, M., Fang, Z.M., Hilton, E.N., McGaughran, J., Zhao, Z., de Bock, C.E., Howard, E., Malass, M., Donnai, D., Diwan, A., Manson, F.D., Murrell, D., and Clarke, R.A. 2008. Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum. Mutat. 29:1017–1027.PubMedCrossRefGoogle Scholar
  132. Thauvin-Robinet, C., Faivre, L., Huet, F., Journeau, P., Glorion, C., Rustin, P., Rötig, A., Munnich, A., and Cormier-Daire, V. 2006. Another observation with VATER association and a complex IV respiratory chain deficiency. Eur. J. Med. Genet. 49:71–77.PubMedCrossRefGoogle Scholar
  133. Thomsen, B., Horn, P., Panitz, F., Bendixen, E., Petersen, A.H., Holm, L.E., Nielsen, V.H., Agerholm, J.S., Arnbjerg, J., and Bendixen, C. 2006. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 16:97–105.PubMedCrossRefGoogle Scholar
  134. Tian, Y., Ishikawa, H., Yamaguchi, T., Yamauchi, T., and Yokoyama, K. 2005. Teratogenicity and developmental toxicity of chlorpyrifos. Maternal exposure during organogenesis in mice. Reprod. Toxicol. 20:267–270.PubMedCrossRefGoogle Scholar
  135. Tracy, M.R., Dormans, J.P., and Kusumi, K. 2004. Klippel-Feil syndrome: clinical features and current understanding of etiology. Clin. Orthop. Relat. Res. 424:183–190.PubMedCrossRefGoogle Scholar
  136. Tredwell, S.J., Smith, D.F., Macleod, P.J., and Wood, B.J. 1982. Cervical spine anomalies in fetal alcohol syndrome. Spine 7:331–334.PubMedCrossRefGoogle Scholar
  137. Tribioli, C., Frasch, M., and Lufkin, T. 1997. Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech. Dev. 65:145–162.PubMedCrossRefGoogle Scholar
  138. Vissers, L.E., van Ravenswaaij, C.M., Admiraal, R., Hurst, J.A., de Vries, B.B., Janssen, I.M., van der Vliet, W.A., Huys, E.H., de Jong, P.J., Hamel, B.C., Schoenmakers, E.F., Brunner, H.G., Veltman, J.A., and van Kessel, A.G. 2004. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36:955–957.PubMedCrossRefGoogle Scholar
  139. Wang, X., Moreau, M., Raso, V.J., Zhao, J., Jiang, H., Mahood, J., and Bagnall, K. 1998. Changes in serum melatonin levels in response to pinealectomy in the chicken and its correlation with development of scoliosis. Spine 23:2377–2381.PubMedCrossRefGoogle Scholar
  140. Watabe-Rudolph, M., Schlautmann, N., Papaioannou, V.E., and Gossler, A. 2002. The mouse rib-vertebrae mutation is a hypomorphic Tbx6 allele. Mech. Dev. 119:251–256.PubMedCrossRefGoogle Scholar
  141. Weihing, R.R. 1985. The filamins: properties and functions. Can. J. Biochem. Cell. Biol. 63:397–413.PubMedGoogle Scholar
  142. Wéry, N., Narotsky, M.G., Pacico, N., Kavlock, R.J., Picard, J.J., and Gofflot, F. 2003. Defects in cervical vertebrae in boric acid-exposed rat embryos are associated with anterior shifts of hox gene expression domains. Birth Defects Res. A Clin. Mol. Teratol. 67:59–67.PubMedCrossRefGoogle Scholar
  143. Wynne-Davies, R. 1975. Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J. Med. Genet. 12:280–288.PubMedCrossRefGoogle Scholar
  144. Xue, Y., Gao, X., Lindsell, C.E., Norton, C.R., Chang, B., Hicks, C., Gendron-Maguire, M., Rand, E.B., Weinmaster, G., and Gridley, T. 1999. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8:723–730.PubMedCrossRefGoogle Scholar
  145. Yeowell, H.N., and Walker, L.C. 2000. Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers-Danlos syndrome type VI. Mol. Genet. Metab. 71:212–224.PubMedCrossRefGoogle Scholar
  146. Yoshiura, K.I., and Murray, J.C. 1997. Sequence and chromosomal assignment of human BAPX1, a bagpipe-related gene, to 4p16.1: a candidate gene for skeletal dysplasia. Genomics 45:425–428.PubMedCrossRefGoogle Scholar
  147. Zweers, M.C., Bristow, J., Steijlen, P.M., Dean, W.B., Hamel, B.C., Otero, M., Kucharekova, M., Boezeman, J.B., and Schalkwijk, J. 2003. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am. J. Hum. Genet. 73:214–217.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of WisconsinMadisonUSA
  2. 2.Department of Medical Genetic ServicesMarshfield ClinicMarshfieldUSA

Personalised recommendations