Development and Functional Anatomy of the Spine

  • Alan Rawls
  • Rebecca E. Fisher


The vertebral column is composed of alternating vertebrae and intervertebral (IV) discs supported by robust spinal ligaments and muscles. All of these elements, bony, cartilaginous, ligamentous, and muscular, are essential to the structural integrity of the spine. The spine serves three vital functions: protecting the spinal cord and spinal nerves, transmitting the weight of the body, and providing a flexible axis for movements of the head and the torso. The vertebral column is capable of extension, flexion, lateral flexion (side to side), and rotation. However, the degree to which the spine is capable of these movements varies by region. These regions, including the cervical, the thoracic, the lumbar, and the sacrococcygeal spine, form four curvatures (Fig. 2.1). The thoracic and the sacrococcygeal curvatures are established in fetal development, while the cervical and the thoracic curvatures develop during infancy. The cervical curvature arises in response to holding the head upright, while the lumbar curvature develops as an infant begins to sit upright and walk. Congenital defects and degenerative diseases can result in exaggerated, abnormal curvatures. The most common of these include a thoracic kyphosis (or hunchback deformity), a lumbar lordosis (or swayback deformity), and scoliosis. Scoliosis involves a lateral curvature of greater than 10°, often accompanied by a rotational defect. To appreciate the potential underlying causes of scoliosis, we need to understand the cellular and genetic basis of vertebral column and skeletal muscle development from somites. In this chapter, we will review the embryonic development of the spine and associated muscles and link them to the functional anatomy of these structures in the adult.


Vertebral Body Nucleus Pulposus Spinous Process Vertebral Column Neural Arch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Brent Adrian for preparing Figs. 2.1, 2.3, 2.4, 2.5, and 2.8.


  1. Afonin, B., Ho, M., Gustin, J.K., Meloty-Kapella, C., and Domingo, C.R. 2006. Cell behaviors associated with somite segmentation and rotation in Xenopus laevis. Dev Dyn. 235:3268–3279.Google Scholar
  2. Alexander, M.A. and Season, E.H. 1978. Idiopathic scoliosis: an electromyographic study. Arch. Phys. Med. Rehabil. 59:314–315.PubMedGoogle Scholar
  3. Alvares, L.E., Schubert, F.R., Thorpe, C., Mootoosamy, R.C., Cheng, L., Parkyn, G., Lumsden, A., and Dietrich, S. 2003. Intrinsic, Hox-dependent cues determine the fate of skeletal muscle precursors. Dev. Cell 5:379–390.PubMedCrossRefGoogle Scholar
  4. Aoyama, H. and Asamoto, K. 1988. Determination of somite cells: independence of cell differentiation and morphogenesis. Development. 104:15–28.Google Scholar
  5. Aoyama, H. and Asamoto, K. 2000. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech. Dev. 99:71–82.PubMedCrossRefGoogle Scholar
  6. Arnold, H.H. and Braun, T. 2000. Genetics of muscle determination and development. Curr. Top. Dev. Biol. 48:129–164.PubMedCrossRefGoogle Scholar
  7. Ashby, P., Chinnah, T., Zakany, J., Duboule, D., and Tickle, C. 2002. Muscle and tendon pattern is altered independently of skeletal pattern in HoxD mutant limbs. J. Anat. 201:422.PubMedGoogle Scholar
  8. Baffi, M.O., Moran, M.A., and Serra, R. 2006. Tgfbr2 regulates the maintenance of boundaries in the axial skeleton. Dev. Biol. 296:363–374.PubMedCrossRefGoogle Scholar
  9. Barrallo-Gimeno, A., and Nieto, M.A. 2005. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161.PubMedCrossRefGoogle Scholar
  10. Barrantes, I.B., Elia, A.J., Wünsch, K., Hrabe de Angelis, M.H., Mak, T.W., Rossant, J., Conlon, R.A., Gossler, A., and de la Pompa, J.L. 1999. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol. 9:470–480.Google Scholar
  11. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2:84–89.PubMedCrossRefGoogle Scholar
  12. Berkes, C.A., Bergstrom, D.A., Penn, B.H., Seaver, K.J., Knoepfler, P.S., and Tapscott, S.J. 2004. Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol. Cell 14:465–477.PubMedCrossRefGoogle Scholar
  13. Borello, U., Berarducci, B., Murphy, P., Bajard, L., Buffa, V., Piccolo, S., Buckingham, M., and Cossu, G. 2006. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133:3723–3732.PubMedCrossRefGoogle Scholar
  14. Borycki, A., Brown, A.M., and Emerson, C.P. Jr. 2000. Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127:2075–2087.PubMedGoogle Scholar
  15. Borycki, A.G., Brunk, B., Tajbakhsh, S., Buckingham, M., Chiang, C., and Emerson, C.P. Jr. 1999. Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126:4053–4063.PubMedGoogle Scholar
  16. Brand-Saberi, B., and Christ, B. 2000. Evolution and development of distinct cell lineages derived from somites. Curr. Topics Dev. Biol. 48:1–42.CrossRefGoogle Scholar
  17. Brent, A.E., Braun, T., and Tabin, C.J. 2005. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528.PubMedCrossRefGoogle Scholar
  18. Brent, A.E., Schweitzer, R., and Tabin, C.J. 2003. A somitic compartment of tendon progenitors. Cell 113:235–248.PubMedCrossRefGoogle Scholar
  19. Brent, A.E. and Tabin, C.J. 2004. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131:3885–3896.PubMedCrossRefGoogle Scholar
  20. Buchberger, A., Seidl, K., Klein, C., Eberhardt, H., and Arnold, H.H. 1998. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev. Biol. 199:201–215.PubMedCrossRefGoogle Scholar
  21. Burgess, R., Cserjesi, P., Ligon, K.L., and Olson, E.N. 1995. Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites. Dev. Biol. 168:296–306.PubMedCrossRefGoogle Scholar
  22. Burgess, R., Rawls, A., Brown, D., Bradley, A., and Olson, E.N. 1996. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384:570–573.PubMedCrossRefGoogle Scholar
  23. Butterworth, T.R. and James, C. 1969. Electromyographic studies in idiopathic scoliosis. South Med. J. 62:1008–1010.PubMedGoogle Scholar
  24. Buxton, D.F. and Peck, D. 1989. Neuromuscular spindles relative to joint movement complexities. Clin. Anat. 2:211–224.CrossRefGoogle Scholar
  25. Bylund, P., Jansson, E., Dahlberg, E., and Eriksson, E. 1987. Muscle fiber types in thoracic erector spinae muscles. Clin. Orthop. 214:222–228.PubMedGoogle Scholar
  26. Cailliet, R. 1988. Low Back Pain Syndrome. Fourth Edition. Philadelphia: FA Davis Company.Google Scholar
  27. Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F., and Nieto, M.A. 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2:76–83.PubMedCrossRefGoogle Scholar
  28. Capellini, T.D., Di Giacomo, G., Salsi, V., Brendolan, A., Ferretti, E., Srivastava, D., Zappavigna, V., and Selleri, L. 2006. Pbx1/Pbx2 requirement for distal limb patterning is mediated by the hierarchical control of Hox gene spatial distribution and Shh expression. Development 133:2263–2273.PubMedCrossRefGoogle Scholar
  29. Capellini, T.D., Zewdu, R., Di Giacomo, G., Asciutti, S., Kugler, J.E., Di Gregorio, A., and Selleri, L. 2008. Pbx1/Pbx2 govern axial skeletal development by controlling Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome. Dev. Biol. 321:500–514.PubMedCrossRefGoogle Scholar
  30. Chan, Y.L., Cheng, J.C.Y., Guo, X., King, A.D., Griffith, J.F., and Metreweli, C. 1999. MRI evaluation of multifidus muscles in adolescent idiopathic scoliosis. Pediatr. Radiol. 29:360–363.PubMedCrossRefGoogle Scholar
  31. Chen, F., Greer, J., and Capecchi, M.R. 1998. Analysis of Hoxa7/Hoxb7 mutants suggests periodicity in the generation of different sets of vertebrae. Mech. Dev. 77:49–57.PubMedCrossRefGoogle Scholar
  32. Condie, B.G. and Capecchi, M.R. 1994. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Science 370:304–307.Google Scholar
  33. Conlon, R.A., Reaume, A.G., and Rossant, J. 1995. Notch1 is required for the coordinate segmentation of somites. Development. 121:1533–1545.Google Scholar
  34. Correia, K.M. and Conlon, R.A. 2000. Surface ectoderm is necessary for the morphogenesis of somites. Mech. Dev. 91:19–30.PubMedCrossRefGoogle Scholar
  35. Cossu, G. and Borello, U. 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO J. 18:6867–6872.PubMedCrossRefGoogle Scholar
  36. Dale, J.K., Malapert, P., Chal, J., Vilhais-Neto, G., Maroto, M., Johnson, T., Jayasinghe, S., Trainor, P., Herrmann, B., and Pourquié, O. 2006. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev. Cell 10:355–366.PubMedCrossRefGoogle Scholar
  37. de la Pompa, J.L., Wakeham, A., Correia, K.M., Samper, E., Brown, S., Aguilera, R.J., Nakano, T., Honjo, T., Mak, T.W., Rossant, J., and Conlon, R.A. 1997. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139–1148.PubMedGoogle Scholar
  38. Denetclaw, W.F. Jr., Christ, B., and Ordahl, C.P. 1997. Location and growth of epaxial myotome precursor cells. Development 124:1601–1610.PubMedGoogle Scholar
  39. Denetclaw, W.F. and Ordahl, C.P. 2000. The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127: 893–905.PubMedGoogle Scholar
  40. Dockter, J.L. 2000. Sclerotome induction and differentiation. Curr. Top. Dev. Biol. 48:77–127.PubMedCrossRefGoogle Scholar
  41. Duband, J.L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G.M., and Thiery, J.P. 1987. Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol. 104:1361–1374.PubMedCrossRefGoogle Scholar
  42. Dubrulle, J., and Pourquié, O. 2004. Coupling segmentation to axis formation. Development 131:5783–5793.PubMedCrossRefGoogle Scholar
  43. Dunwoodie, S.L., Clements, M., Sparrow, D.B., Sa, X., Conlon, R.A., and Beddington, R.S. 2002. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806.Google Scholar
  44. Fan, C.M., and Tessier-Lavigne, M. 1994. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79: 1175–1186.PubMedCrossRefGoogle Scholar
  45. Fidler, M.W. and Jowett, R.L. 1976. Muscle imbalance in the aetiology of scoliosis. J. Bone Joint Surg. 58-B:200–201.Google Scholar
  46. Ford, D.M., Bagnall, K.M., McFadden, K.D., Greenhill, B.J., and Raso, V.J. 1984. Paraspinal muscle imbalance in adolescent idiopathic scoliosis. Spine 9:373–376.PubMedCrossRefGoogle Scholar
  47. Furumoto, T.A., Miura, N., Akasaka, T., Mizutanikoseki, Y., Sudo, H., Fukuda, K., Maekawa, M., Yuasa, S., Fu, Y., Moriya, H., Taniguchi, M., Imai, K., Dahl, E., Balling, R., Pavlova, M., Gossler, A., and Koseki, H. 1999. Notochord-dependent expression of MFH1 and PAX1 cooperates maintain the proliferation of sclerotome cells during the vertebral column development. Dev. Biol. 210:15–29.PubMedCrossRefGoogle Scholar
  48. Geetha-Loganathan, P., Nimmagadda, S., Huang, R., Christ, B., and Scaal, M. 2006. Regulation of ectodermal Wnt6 expression by the neural tube is transduced by dermomyotomal Wnt11: a mechanism of dermomyotomal lip sustainment. Development 133:2897–2904.PubMedCrossRefGoogle Scholar
  49. Goldstein, R.S. and Kalcheim, C. 1992. Determination of epithelial half-somites in skeletal morphogenesis. Development 116:441–445.PubMedGoogle Scholar
  50. Henry, C.A., Hall, L.A., Burr Hille, M., Solnica-Krezel, L., and Cooper, M.S. 2000. Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. Curr. Biol. 10:1063–1066.PubMedCrossRefGoogle Scholar
  51. Horikawa, K., Radice, G., Takeichi, M., and Chisaka, O. 1999. Adhesive subdivisions intrinsic to the epithelial somites. Dev. Biol. 215:182–189.PubMedCrossRefGoogle Scholar
  52. Hrabĕ de Angelis, M., McIntyre, J., 2nd, and Gossler, A. 1997. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386:717–721.PubMedCrossRefGoogle Scholar
  53. Huang, R., Zhi, Q., Neubuser, A., Muller, T.S., Brand-Saberi, B., Christ, B., and Wilting, J. 1996. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anat. (Basel) 155:231–241.CrossRefGoogle Scholar
  54. Jacob, H.J. and Christ, B. 1980. On the formation of muscular pattern in the chick limb. In Teratology of the Limbs. pp. 89–97. Berlin: Walter de Gruyter and Co.Google Scholar
  55. Jiang, Y.J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., and Lewis, J. 2000. Notch signaling and the synchronization of the somite segmentation clock. Nature 408:475–479.PubMedCrossRefGoogle Scholar
  56. Johnson, J., Rhee, J., Parsons, S.M., Brown, D., Olson, E.N., and Rawls, A. 2001. The anterior/posterior polarity of somites is disrupted in paraxis-deficient mice. Dev. Biol. 229:176–187.PubMedCrossRefGoogle Scholar
  57. Kahane, N., Cinnamon, Y., and Kalcheim, C. 1998. The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 125:4259–4271.PubMedGoogle Scholar
  58. Kardon, G., Harfe, B.D., and Tabin, C.T. 2003. A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. Dev. Cell 5:937–944.PubMedCrossRefGoogle Scholar
  59. Keynes, R.J. and Stern, C.D. 1988. Mechanisms of vertebrate segmentation. Development 103:413–429.PubMedGoogle Scholar
  60. Khosla, S., Tredwell, S.J., Day, B., Shinn, S.L., and Ovalle, W.K. 1980. An ultrastructural study of multifidus muscle in progressive idiopathic scoliosis-changes resulting from a sarcolemmal defect of the myotendinous junction. J. Neurol. Sci. 46:13–31.PubMedCrossRefGoogle Scholar
  61. Kim, D.J., Moon, S.H., Kim, H., Kwon, U.H., Park, M.S., Han, K.J., Hahn, S.B., and Lee, H.M. 2003. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine 28:2679–2684.Google Scholar
  62. Kim, S.Y., Paylor, S.W., Magnuson, T., and Schumacher, A. 2006. Juxtaposed Polycomb complexes co-regulate vertebral identity. Development 133:4957–4968.PubMedCrossRefGoogle Scholar
  63. Koizumi, K., Nakajima, M., Yuasa, S., Saga, Y., Sakai, T., Kuriyama, T., Shirasawa, T., and Koseki, H. 2001. The role of presenilin 1 during somite segmentation. Development 128: 1391–1402.PubMedGoogle Scholar
  64. Kulesa, P.M. and Fraser, S.E. 2002. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298:991–995.PubMedCrossRefGoogle Scholar
  65. Kulesa, P.M., Schnell, S., Rudloff, S., Baker, R.E., and Maini, P.K. 2007. From segment to somite: segmentation epithelialization analyzed within quantitative frameworks. Dev. Dyn. 236:1392–1402.PubMedCrossRefGoogle Scholar
  66. Kusumi, K., Sun, E.S., Kerrebrock, A.W., Bronson, R.T., Chi, D.C., Bulotsky, M.S., Spencer, J.B., Birren, B.W., Frankel, W.N., and Lander, E.S. 1998. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat. Genet. 19(3):274–278.PubMedCrossRefGoogle Scholar
  67. Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276:565–570.PubMedCrossRefGoogle Scholar
  68. Li, J., Yoon, S.T., and Hutton, W.C. 2004. Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J. Spinal Disord. Tech. 17:423–428.PubMedCrossRefGoogle Scholar
  69. Linker, C., Lesbros, C., Gros, J., Burrus, L.W., Rawls, A., and Marcelle, C. 2005. Beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132:3895–3905.PubMedCrossRefGoogle Scholar
  70. Mackie, E.J., Ahmed, Y.A., Tatarczuch, L., Chen, K.S., and Mirams, M. 2008. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40:46–62.PubMedCrossRefGoogle Scholar
  71. Maconochie, M.K., Nonchev, S., Studer, M., Chan, S.K., Popperl, H., Sham, M.H., Mann, R.S., and Krumlauf, R. 1997. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 11:1885–1895.PubMedCrossRefGoogle Scholar
  72. Mankoo, B.S., Skuntz, S., Harrigan, I., Grigorieva, E., Candia, A., Wright, C.V., Arnheiter, H., and Pachnis, V. 2003. The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development 130:4655–4664.PubMedCrossRefGoogle Scholar
  73. Mannion, A.F., Meier, M., Grob, D., and Müntener, M. 1998. Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur. Spine J. 7:289–293.PubMedCrossRefGoogle Scholar
  74. McDermott, A., Gustafsson, M., Elsam, T., Hui, C.C., Emerson, C.P. Jr., and Borycki, A.G. 2005. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 132:345–357.PubMedCrossRefGoogle Scholar
  75. McIntyre, D.M., Rakshit, S., Yallowitz, A.R., Loken, L., Jeannotte, L., Capecchi, M.R., and Wellik, D.M. 2007. Hox Patterning of the vertebrate rib cage. Development 134: 2981–2989.PubMedCrossRefGoogle Scholar
  76. McKinsey, T.A., Zhang, C.L., Lu, J., and Olson, E.N. 2000. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111.PubMedCrossRefGoogle Scholar
  77. McKinsey, T.A., Zhang, C.L., and Olson, E.N. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497–504.PubMedCrossRefGoogle Scholar
  78. McMahon, J.A., Takada, S., Zimmerman, L.B., and McMhaon, A.P. 1998. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12:1438–1452.PubMedCrossRefGoogle Scholar
  79. Meier, M.P., Klein, M.P., Krebs, D., Grob, D., and Müntener, M. 1997. Fiber transformations in multifidus muscle of young patients with idiopathic scoliosis. Spine 22:2357–2364.PubMedCrossRefGoogle Scholar
  80. Mittapalli, V.R., Huang, R., Patel, K., Christ, B., and Scaal, M. 2005. Arthrotome: a specific joint forming compartment in the avian somite. Dev. Dyn. 234:48–53.PubMedCrossRefGoogle Scholar
  81. Moens, C.B. and Selleri, L. 2006. Hox cofactors in vertebrate development. Dev. Biol. 291:193–206.PubMedCrossRefGoogle Scholar
  82. Molkentin, J.D. and Olson, E.N. 1996. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6:445–453.PubMedCrossRefGoogle Scholar
  83. Monsoro-Burq, A.H., Bontoux, M., Teillet, M.A., and Le Douarin, N.M. 1994. Heterogeneity in the development of the vertebra. Proc. Natl. Acad. Sci. U.S.A. 91:10435–10439.PubMedCrossRefGoogle Scholar
  84. Monsoro-Burq, A.H., Duprez, D., Watanabe, Y., Bontoux, M., Vincent, C., Brickell, P., and Le Douarin, N. 1996. The role of bone morphogenetic proteins in vertebral development. Development 122:3607–3616.PubMedGoogle Scholar
  85. Moore, K.L. and Dalley, A.F. 2006. Clinically Oriented Anatomy. Baltimore: Lippincott Williams and Wilkins.Google Scholar
  86. Morimoto, M., Sasaki, N., Oginuma, M., Kiso, M., Igarashi, K., Aizaki, K., Kanno, J., and Saga, Y. 2007. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134:1561–1569.PubMedCrossRefGoogle Scholar
  87. Nakaya, Y., Kuroda, S., Katagiri, Y.T., Kaibuchi, K., and Takahashi, Y. 2004. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7:425–438.PubMedCrossRefGoogle Scholar
  88. Oka, C., Nakano, T., Wakeham, A., de la Pompa, J.L., Mori, C., Sakai, T., Okazaki, S., Kawaichi, M., Shiota, K., Mak, T.W., and Honjo, T. 1995. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121:3291–3301.PubMedGoogle Scholar
  89. Ordahl, C.P., Berdougo, E., Venters, S.J., and Denetclaw, W.F. Jr. 2001. The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium. Development 128:1731–1744.PubMedGoogle Scholar
  90. Ordahl, C.P. and Le Douarin, N.M. 1992. Two myogenic lineages within the developing somite. Development 114:339–353.PubMedGoogle Scholar
  91. Paavola, L.G., Wilson, D.B., and Center, E.M. 1980. Histochemistry of the developing notochord, perichordal sheath and vertebrae in Danforth’s short-tail (sd) and normal C57BL/6 mice. J. Embryol. Exp. Morphol. 55:227–245.PubMedGoogle Scholar
  92. Palmeirim, I., Dubrulle, J., Henrique, D., Ish-Horowicz, D., and Pourquié, O. 1998. Uncoupling segmentation and somitogenesis in the chick presomitic mesoderm. Dev. Genet. 23: 77–85.PubMedCrossRefGoogle Scholar
  93. Peters, H., Doll, U., and Niessing, J. 1995. Differential expression of the chicken Pax-1 and Pax-9 gene: in situ hybridization and immunohistochemical analysis. Dev. Dyn. 203:1–16.PubMedGoogle Scholar
  94. Peters, H., Wilm, B., Sakai, N., Imai, K., Maas, R., and Balling, R. 1999. Pax1 and Pax9 synergistically regulate vertebral column development. Development 126:5399–5408.PubMedGoogle Scholar
  95. Popperl, H., Bienz, M., Studer, M., Chan, S.K., Aparicio, S., Brenner, S., Mann, R.S., and Krumlauf, R. 1995. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81:1031–1042.PubMedCrossRefGoogle Scholar
  96. Pourquie, O., Coltey, M., Teillet, M.A., Ordahl, C., and Le Douarin, M. 1993. Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc. Natl. Acad. Sci. U.S.A. 90:5242–5246.PubMedCrossRefGoogle Scholar
  97. Puri, P.L., Sartorelli, V., Yang, X.J., Hamamori, Y., Ogryzko, V.V., Howard, B.H., Kedes, L., Wang, J.Y., Graessmann, A., Nakatani, Y., and Levrero, M. 1997. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1:35–45.PubMedCrossRefGoogle Scholar
  98. Radice, G.L., Rayburn, H., Matsunami, H., Knudsen, K.A., Takeichi, M., and Hynes, R.O. 1997. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol. 181:64–78.PubMedCrossRefGoogle Scholar
  99. Reshef, R., Maroto, M., and Lassar, A.B. 1998. Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev. 12:290–303.PubMedCrossRefGoogle Scholar
  100. Reuber, M., Schultz, A., McNeill, T., and Spencer, D. 1983. Trunk muscle myoelectric activities in idiopathic scoliosis. Spine 8:447–456.PubMedCrossRefGoogle Scholar
  101. Saga, Y., Hata, N., Koseki, H., and Taketo, M.M. 1997. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11:1827–1839.PubMedCrossRefGoogle Scholar
  102. Sahgal, V., Shah, A., Flanagan, N., Schaffer, M., Kane, W., Subramani, V., and Singh, H. 1983. Morphologic and morphometric studies of muscle in idiopathic scoliosis. Acta Orthop. 54:242–251.CrossRefGoogle Scholar
  103. Sartorelli, V., Puri, P.L., Hamamori, Y., Ogryzko, V., Chung, G., Nakatani, Y., Wang, J.Y., and Kedes, L. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734.PubMedCrossRefGoogle Scholar
  104. Sato, Y. and Takahashi, Y. 2005. A novel signal induces a segmentation fissure by acting in a ventral-to-dorsal direction in the presomitic mesoderm. Dev. Biol. 282:183–191.PubMedCrossRefGoogle Scholar
  105. Sato, Y., Yasuda, K., and Takahashi, Y. 2002. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development 129:3633–3644.PubMedGoogle Scholar
  106. Schmidt, C., Stoeckelhuber, M., McKinnell, I., Putz, R., Christ, B., and Patel, K. 2004. Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation. Dev. Biol. 271:198–209.PubMedCrossRefGoogle Scholar
  107. Schubert, F.R., Tremblay, P., Mansouri, A., Faisst, A.M., Kammandel, B., Lumsden, A., Gruss, P., and Dietrich, S. 2001. Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev. Dyn. 222:506–521.PubMedCrossRefGoogle Scholar
  108. Schuster-Gossler, K., Harris, B., Johnson, R., Serth, J., and Gossler, A. 2009. Notch signalling in the paraxial mesoderm is most sensitive to reduced Pofut1 levels during early mouse development. BMC Dev. Biol. 9:6.PubMedCrossRefGoogle Scholar
  109. Skuntz, S., Mankoo, B., Nguyen, M.T., Hustert, E., Nakayama, A., Tournier-Lasserve, E., Wright, C.V., Pachnis, V., Bharti, K., and Arnheiter, H. 2009. Lack of the mesodermal homeodomain protein MEOX1 disrupts sclerotome polarity and leads to a remodeling of the cranio-cervical joints of the axial skeleton. Dev. Biol. 2009 Aug 15;332(2):383–95.Google Scholar
  110. Smith, T.G., Sweetman, D., Patterson, M., Keyse, S.M., and Münsterberg, A. 2005. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 132: 1305–1314.PubMedCrossRefGoogle Scholar
  111. Smits, P. and Lefebvre, V. 2003. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 130:1135–1148.PubMedCrossRefGoogle Scholar
  112. Sosić, D., Brand-Saberi, B., Schmidt, C., Christ, B., and Olson, E.N. 1997. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev. Biol. 185:229–243.PubMedCrossRefGoogle Scholar
  113. Sparrow, D.B., Chapman, G., Turnpenny, P.D., and Dunwoodie, S.L. 2007. Disruption of the somitic molecular clock causes abnormal vertebral segmentation. Birth Defects Res. C Embryo Today 81:93–110.PubMedCrossRefGoogle Scholar
  114. Spencer, G.S. and Zorab, P.A. 1976. Spinal muscle in scoliosis. Part 1: histology and histochemistry. J. Neurol. Sci. 30:127–142.Google Scholar
  115. Summerbell, D., Ashby, P.R., Coutelle, O., Cox, D., Yee, S., and Rigby, P.W. 2000. The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development 127:3745–3757.PubMedGoogle Scholar
  116. Swiatek, P.J., Lindsell, C.E., del Amo, F.F., Weinmaster, G., and Gridley, T. 1994. Notch1 is essential for postimplantation development in mice. Genes Dev. 8:707–719.PubMedCrossRefGoogle Scholar
  117. Tajbakhsh, S., Borello, U., Vivarelli, E., Kelly, R., Papkoff, J., Duprez, D., Buckingham, M., and Cossu, G. 1998. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162.PubMedGoogle Scholar
  118. Takahashi, Y., Inoue, T., Gossler, A., and Saga, Y. 2003. Feedback loops comprising Dll1, Dll3 and Mesp2, and differential involvement of Psen1 are essential for rostrocaudal patterning of somites. Development 130:4259–4268.PubMedCrossRefGoogle Scholar
  119. Takahashi, Y., Koizumi, K., Takagi, A., Kitajima, S., Inoue, T., Koseki, H., and Saga, Y. 2000. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet. 25:390–396.PubMedCrossRefGoogle Scholar
  120. Takahashi, Y. and Sato, Y. 2008. Somitogenesis as a model to study the formation of morphological boundaries and cell epithelialization. Develop. Growth Differ. 50:S149–S155.CrossRefGoogle Scholar
  121. Takahashi, Y., Takagi, A., Hiraoka, S., Koseki, H., Kanno, J., Rawls, A., and Saga, Y. 2007. Transcription factors Mesp2 and Paraxis have critical roles in axial musculoskeletal formation. Dev. Dyn. 236:1484–1494.PubMedCrossRefGoogle Scholar
  122. Tam, P.P. and Trainor, P.A. 1994. Specification and segmentation of the paraxial mesoderm. Anat. Embryol. 189:275–305.PubMedCrossRefGoogle Scholar
  123. Tanaka, M. and Tickle, C. 2004. Tbx18 and boundary formation in chick somite and wing development. Dev. Biol. 268:470–480.PubMedCrossRefGoogle Scholar
  124. Teboul, L., Summerbell, D., and Rigby, P.W. 2003. The initial somitic phase of Myf5 expression requires neither Shh signaling nor Gli regulation. Genes Dev. 17:2870–2874.PubMedCrossRefGoogle Scholar
  125. Teppner, I., Becker, S., de Angelis, M.H., Gossler, A., and Beckers, J. 2007. Compartmentalised expression of Delta-like 1 in epithelial somites is required for the formation of intervertebral joints. BMC Dev. Biol. 7:68.PubMedCrossRefGoogle Scholar
  126. Tonegawa, A., Funayama, N., Ueno, N., and Takahashi, Y. 1997. Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124:1975–1984.PubMedGoogle Scholar
  127. Tozer, S. and Duprez, D. 2005. Tendon and ligament: development, repair and disease. Birth Defects Res. C Embryo Today 75:226–236.PubMedCrossRefGoogle Scholar
  128. van den Akker, E., Fromental-Ramain, C., deGraaf, W., LeMouellic, H., Brulet, P., Chambon, P., and Deschamps, J. 2001. Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development 128:1911–1921.PubMedGoogle Scholar
  129. Venters, S.J., Thorsteinsdottir, S., and Duxson, M.J. 1999. Early development of the myotome in the mouse. Dev. Dyn. 216:219–232.PubMedCrossRefGoogle Scholar
  130. Wagner, J., Schmidt, C., Nikowits, W. Jr., and Christ, B. 2000. Compartmentalization of the somite and myogenesis in chick embryos are influenced by wnt expression. Dev. Biol. 228:86–94.PubMedCrossRefGoogle Scholar
  131. Watanabe, Y., Duprez, D., Monsoro-Burq, A.H., Vincent, C., and Le Douarin, N.M. 1998. Two domains in vertebral development: antagonistic regulation by SHH and BMP4 proteins. Development 125:2631–2639.PubMedGoogle Scholar
  132. Wellik, D.M. 2007. Hox patterning of the vertebrate axial skeleton. Dev. Dyn. 236:2454–2463.PubMedCrossRefGoogle Scholar
  133. Wellik, D.M. and Capecchi, M.R. 2003. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–366.PubMedCrossRefGoogle Scholar
  134. Wood, A. and Thorogood, P. 1994. Patterns of cell behavior underlying somitogenesis and notochord formation in intact vertebrate embryos. Dev. Dyn. 201:151–167.PubMedGoogle Scholar
  135. Yang, X., Arber, S., William, C., Li, L., Tanabe, Y., Jessell, T.M., Birchmeier, C., and Burden, S.J. 2001. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410.PubMedCrossRefGoogle Scholar
  136. Yarom, R. and Robin, G.C. 1979. Studies on spinal and peripheral muscles from patients with scoliosis. Spine 4:12–21.PubMedCrossRefGoogle Scholar
  137. Yasuhiko, Y., Haraguchi, S., Kitajima, S., Takahashi, Y., Kanno, J., and Saga, Y. 2006. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl. Acad. Sci. U.S.A. 103:3651–3656.PubMedCrossRefGoogle Scholar
  138. Yoon, S.T., Su Kim, K., Li, J., Soo Park, J., Akamaru, T., Elmer, W.A., and Hutton, W.C. 2003. The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine 28: 1773–1780.CrossRefGoogle Scholar
  139. Zetterberg, C., Aniansson, A., and Grimby, G. 1983. Morphology of the paravertebral muscles in adolescent idiopathic scoliosis. Spine 8:457–462.PubMedCrossRefGoogle Scholar
  140. Zuk, T. 1962. The role of spinal and abdominal muscles in the pathogenesis of scoliosis. J. Bone Joint Surg. Br. 44:102–105.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Life Sciences, Arizona State UniversityTempeUSA
  2. 2.Department of Basic Medical SciencesThe University of Arizona College of Medicine–Phoenix in Partnership with Arizona State UniversityPhoenixUSA

Personalised recommendations