Biodegradation of Chlorinated Ethenes

  • Paul M. Bradley
  • Francis H. Chapelle
Part of the SERDP/ESTCP Environmental Remediation Technology book series (SERDP/ESTCP)


Biodegradation of chlorinated ethenes by naturally occurring or artificially enhanced processes is an important component of current site remediation strategies. At this writing, several microbial mechanisms for chlorinated ethene transformation and degradation have been identified. The purpose of this chapter is to briefly summarize the current understanding of those processes that lead to the biodegradation of chlorinated ethenes.


Vinyl Chloride Dissolve Oxygen Concentration Oxic Condition Methyl Tertiary Butyl Ether Reductive Dechlorination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamson DT, Parkin GF. 2001. Product distribution during transformation of multiple contaminants by a high-rate, tetrachloroethene-dechlorinating enrichment culture. Biodegradation 12:337–348.CrossRefGoogle Scholar
  2. Asplund G. 1995. Origin and occurrence of halogenated organic matter in soil. In Grimvall A, de Leer EWB, eds, Naturally-Produced Organohalogens. Kluwer Academic Publishers, Boston, MA, USA, pp 35–48.CrossRefGoogle Scholar
  3. Baek NH, Jaffé PR. 1989. The degradation of trichloroethylene in mixed methanogenic cultures. J Environ Qual 18:515–518.CrossRefGoogle Scholar
  4. Ballapragada BS, Puhakka JA, Stensel HD, Ferguson JF. 1995. Development of tetrachloroethene transforming anaerobic cultures from municipal digester sludge. In Hinchee RE, Leeson A, Semprini L, eds, Bioremediation of Chlorinated Solvents. Battelle Press, Columbus, OH, USA, pp 91–97.Google Scholar
  5. Ballapragada BS, Stensel HD, Puhakka JA, Ferguson JF. 1997. Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ Sci Technol 31:1728–1734.CrossRefGoogle Scholar
  6. Barrio-Lage GA, Parsons FZ, Nassar RS, Lorenzo PA. 1987. Biotransformation of trichloroethene in a variety of subsurface materials. Environ Toxicol Chem 6:571–578.CrossRefGoogle Scholar
  7. Barrio-Lage GA, Parsons FZ, Barbitz RM, Lorenzo PL, Archer HE. 1990. Enhanced anaerobic biodegradation of vinyl chloride in groundwater. Environ Toxicol Chem 9:403–415.CrossRefGoogle Scholar
  8. Battelle. 2001. Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers. Final report. Environmental Security Technology Certification Program, Arlington, VA, USA. Accessed July 22, 2009.
  9. Bouwer EJ. 1994. Bioremediation of chlorinated solvents using alternate electron acceptors. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 149–175.Google Scholar
  10. Bradley PM. 2003. History and ecology of chloroethene biodegradation: A review. Bioremediation J 7:81–109.CrossRefGoogle Scholar
  11. Bradley PM, Chapelle FH. 1996. Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environ Sci Technol 30:2084–2086.CrossRefGoogle Scholar
  12. Bradley PM, Chapelle FH. 1997. Kinetics of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditions. Environ Sci Technol 31:2692–2696.CrossRefGoogle Scholar
  13. Bradley PM, Chapelle FH. 1998a. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ Sci Technol 32:553–557.CrossRefGoogle Scholar
  14. Bradley PM, Chapelle, FH. 1998b. Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4:81–87.CrossRefGoogle Scholar
  15. Bradley PM, Chapelle FH. 1999a. Methane as a product of chloroethene biodegradation under methanogenic conditions. Environ Sci Technol 33: 653–656.CrossRefGoogle Scholar
  16. Bradley PM, Chapelle FH. 1999b. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride. Environ Sci Technol 33: 3473–3476.CrossRefGoogle Scholar
  17. Bradley PM, Chapelle FH. 2000a. Aerobic microbial mineralization of dichloroethene as sole carbon substrate. Environ Sci Technol 34: 221–223.CrossRefGoogle Scholar
  18. Bradley PM, Chapelle FH. 2000b. Acetogenic microbial degradation of vinyl chloride. Environ Sci Technol 34: 2761–2763.CrossRefGoogle Scholar
  19. Bradley PM, Chapelle FH. 2002. Microbial mineralization of ethene under sulfate reducing conditions. Bioremediation J 6:1–8.CrossRefGoogle Scholar
  20. Bradley PM, Chapelle FH. 2007. Accumulation of dechlorination daughter products: A valid metric of chloroethene biodegradation? Remediat J 17:7–22.CrossRefGoogle Scholar
  21. Bradley PM, Chapelle FH, Lovley DR. 1998a. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64:3102–3105.Google Scholar
  22. Bradley PM, Chapelle FH, Wilson JT. 1998b. Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer. J Contam Hydrol 31:111–127.CrossRefGoogle Scholar
  23. Bradley PM, Landmeyer JE, Dinicola RS. 1998c. Anaerobic oxidation of [1,2-14C] dichloroethene under Mn(IV)-reducing conditions. Appl Environ Microbiol 64:1560–1562.Google Scholar
  24. Bradley PM, Chapelle FH, Landmeyer JE. 2001a. Effect of redox conditions on MTBE biodegradation in surface water sediments. Environ Sci Technol 35:4643–4647.CrossRefGoogle Scholar
  25. Bradley PM, Chapelle FH, Landmeyer JE. 2001b. Methyl t-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions. Appl Environ Microbiol 67:1975–1978.CrossRefGoogle Scholar
  26. Bradley PM, Chapelle FH, Landmeyer JE. 2006. Effect of H2 and redox condition on biotic and abiotic MTBE transformation. Ground Water Monitor Remed 26:74–81.CrossRefGoogle Scholar
  27. Bradley PM, Chapelle FH, Löffler FE. 2008. Anoxic mineralization: Environmental reality or experimental artifact? Ground Water Monitor Remediat 28:47–49.CrossRefGoogle Scholar
  28. Buschhorn H, Dürre P, Gottschalk G. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840.Google Scholar
  29. Carr CS, Hughes JB. 1998. Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity. Environ Sci Technol 32:1817–1824.CrossRefGoogle Scholar
  30. Carter SR, Jewell WJ. 1993. Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Res 27:607–615.CrossRefGoogle Scholar
  31. Chapelle FH. 1996. Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems. In Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509, pp 17–20.Google Scholar
  32. Chapelle FH, Bradley PM. 1998. Selecting remediation goals by assessing the natural attenuation capacity of ground-water systems. Bioremediation J 2:227–238.Google Scholar
  33. Chapelle FH, Bradley PM, Casey CC. 2005. Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s Reagent. Ground Water Monitor Remed 25:131–141.CrossRefGoogle Scholar
  34. Cole JR, Fathepure BZ, Tiedje JT. 1995. Tetrachlorethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedjei DCB-1. Biodegradation J 6:167–172.CrossRefGoogle Scholar
  35. Coleman NV, Mattes TM, Gossett JM, Spain JC. 2002a. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171.CrossRefGoogle Scholar
  36. Coleman NV, Mattes TM, Gossett JM, Spain JC. 2002b. Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl Environ Microbiol 68:2726–2730.CrossRefGoogle Scholar
  37. Cupples AM, Spormann AM, McCarty PL. 2003. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959.CrossRefGoogle Scholar
  38. Davis JW, Carpenter CL. 1990. Aerobic biodegradation of vinyl chloride in groundwater samples. Appl Environ Microbiol 56:3870–3880.Google Scholar
  39. De Bruin WP, Kotterman MJJ, Posthumus MA, Schraa G, Zehnder AJB. 1992. Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58:1996–2000.Google Scholar
  40. DeWeerd KA, Suflita JM. 1990. Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei. Appl Environ Microbiol 56:2999–3005.Google Scholar
  41. DiStefano TD, Gossett JM, Zinder SH. 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57:2287–2292.Google Scholar
  42. Dolan ME, McCarty PL. 1995. Small-column microcosm for assessing methane-stimulated vinyl chloride transformation in aquifer samples. Environ Sci Technol 29:1892–1897.CrossRefGoogle Scholar
  43. Dolfing J, Janssen DB. 1994. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation J 5:21–28.Google Scholar
  44. Eichler B, Schink B. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobic. Arch Microbiol 140:147–152.CrossRefGoogle Scholar
  45. El Fantroussi S, Naveau H, Agathos SN. 1998. Anaerobic dechlorinating bacteria. Biotechnol Prog 14:167–188.CrossRefGoogle Scholar
  46. Elango VK, Liggenstoffer AS, Fathepure BZ. 2006. Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1. Appl Microbiol Biotechnol 72:1270–1275.CrossRefGoogle Scholar
  47. Emde R, Schink B. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch Microbiol 149:142–148.CrossRefGoogle Scholar
  48. Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL. 2005. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the eastern Snake River plain aquifer. Appl Environ Microbiol 71:2016–2025.CrossRefGoogle Scholar
  49. Fan S, Scow KM. 1993. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil. Appl Environ Microbiol 59:1911–1918.Google Scholar
  50. Fathepure BZ, Boyd SA. 1988a. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl Environ Microbiol 54:2976–2980.Google Scholar
  51. Fathepure BZ, Boyd SA. 1988b. Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol Lett 49:149–156.Google Scholar
  52. Fathepure BZ, Nengu JP, Boyd SA. 1987. Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol 53:2671–2674.Google Scholar
  53. Fennell DE, Stover MA, Zinder SH, Gossett JM. 1995. Comparison of alternative electron donors to sustain PCE anaerobic reductive dechlorination. In Hinchee RE, Leeson A, Semprini L, eds, Bioremediation of Chlorinated Solvents. Battelle Press, Columbus, OH, USA, pp 9–16.Google Scholar
  54. Ferrey M, Wilson JT. 2002. Complete natural attenuation of PCE and TCE without vinyl chloride and ethene accumulation. In Gavaskar AR, Chen ASC, eds, Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA.Google Scholar
  55. Ferrey M, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.CrossRefGoogle Scholar
  56. Fitch MW, Speitel Jr GE, Georgiou G. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl Environ Microbiol 62:1124–1128.Google Scholar
  57. Flynn SJ, Löffler FE, Tiedje JM. 2000. Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ Sci Technol 34, 1056–1061.CrossRefGoogle Scholar
  58. Freedman DL, Gossett JM. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151.Google Scholar
  59. Fuller ME, Mu DY, Scow KM. 1995. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in vadose sediments. Microb Ecology 29:311–325.CrossRefGoogle Scholar
  60. Gerritse J, Renard V, Visser J, Gottschal JC. 1995. Complete degradation of tetrachlorethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Environ Microbiol 43:920–928.Google Scholar
  61. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC. 1996. Desulfitobacterium sp. strain PCE1, and anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140.CrossRefGoogle Scholar
  62. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC. 1999. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri. TCE1. Appl Environ Microbiol 65:5212–5221.Google Scholar
  63. Gibson SA, Sewell GW. 1992. Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols. Appl Environ Microbiol 58:1392–1393.Google Scholar
  64. Gossett JM. 2010. Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol 44:1405–1411.CrossRefGoogle Scholar
  65. Gossett JM, Zinder SH. 1996. Microbiological aspects relevant to natural attenuation of chlorinated ethenes. In Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. U.S. Environmental Protection Agency, Washington, DC, USA, pp 10–13.Google Scholar
  66. Gribble GW. 1992. Naturally occurring organohalogen products. J Natural Products 55:1353–1395.CrossRefGoogle Scholar
  67. Gribble GW. 1994. The natural production of chlorinated compounds. Environ Sci Technol 28:310A-319A.Google Scholar
  68. Harr J. 1995. A Civil Action. Vintage Books, New York, NY, USA. 502 p.Google Scholar
  69. Hartmans S. 1995. Microbial degradation of vinyl chloride. In Singh VP, ed, Biotransformations: Microbial Degradation of Health Risk Compounds. Elsevier Science, Amsterdam, The Netherlands, pp 239–248.Google Scholar
  70. Hartmans S, deBont JAM. 1992. Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl Environ Microbiol 58:1220–1226.Google Scholar
  71. Hartmans S, deBont JAM, Tramper J, Luyben KCAM. 1985. Bacterial degradation of vinyl chloride. Biotechnol Lett 7:383–388.CrossRefGoogle Scholar
  72. Hartmans S, Kaptein A, Tramper J, deBont JAM. 1992. Characterization of a Mycobacterium sp. and Xanthobacter sp. for the removal of vinyl chloride and 1,2-dichloroethane from waste gas. Appl Environ Microbiol 37:796–801.Google Scholar
  73. Haston ZC, McCarty PL. 1999. Chlorinated ethene half-velocity coefficients (ks) for reductive dehalogenation. Environ Sci Technol 33:223–226.CrossRefGoogle Scholar
  74. Haston ZC, Sharma PK, Black JN, McCarty PL. 1994. Enhanced reductive dechlorination of chlorinated ethenes. Proceedings, USEPA Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, EPA/600/R-94/075.Google Scholar
  75. Hata J, Takamizawa K, Miyata N, Iwahori K. 2003. Biodegradation of cis-1,2-dichloroethylene and vinyl chloride in anaerobic cultures enriched from landfill leachate sediment under Fe(III)-reducing conditions. Biodegradation J 14:275–283.CrossRefGoogle Scholar
  76. He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE. 2002. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36:3945–3952.CrossRefGoogle Scholar
  77. He J, Ritalahti KM, Aiello MR, Löffler FE. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003.CrossRefGoogle Scholar
  78. Holliger C, Schraa G, Stams AJM, Zehnder AJB. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997.Google Scholar
  79. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321.CrossRefGoogle Scholar
  80. Hopkins GD, McCarty PL. 1995. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637.CrossRefGoogle Scholar
  81. Jablonski PE, Ferry JG. 1992. Reductive dechlorination of trichloroethylene by the CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila. FEMS Microbiol Lett 96:55–60.CrossRefGoogle Scholar
  82. Kitanidis PK, Semprini L, Kampbell DH, Wilson JT. 1993. Natural anaerobic bioremediation of TCE at the St Joseph, Michigan, Superfund site. Proceedings, USEPA Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, EPA/600/R-93/054. USEPA, Washington, DC, USA, pp 47–50.Google Scholar
  83. Klier NJ, West RJ, Donberg PA. 1999. Aerobic biodegradation of dichloroethylenes in surface and subsurface soils. Chemosphere 38:1175–1188.CrossRefGoogle Scholar
  84. Koene-Cottaar FHM, Schraa G. 1998. Anaerobic reduction of ethene to ethane in an enrichment culture. FEMS Microbial Ecol 25:251–256.CrossRefGoogle Scholar
  85. Krumholz LR. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethene and trichloroethene as electron acceptors. Internat J Syst Bacteriol 47:1262–1263.CrossRefGoogle Scholar
  86. Krumholz LR, Sharp R, Fishbain SS. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113.Google Scholar
  87. Löffler FE, Tiedje JM, Sanford RA. 1999. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056.Google Scholar
  88. Löffler FE, Sun Q, Li J, Tiedje JM. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.CrossRefGoogle Scholar
  89. Logan BE, Zhang H, Mulvaney P, Milner MG, Head IM, Unz RF. 2001. Kinetics of perchlorate- and chlorate-respiring bacteria. Appl Environ Microbiol 67:2499–2506.CrossRefGoogle Scholar
  90. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275.Google Scholar
  91. Major DW, Hodgins WW, Butler BJ. 1991. Field and laboratory evidence of in situ biotransformation of tetrachloroethene to ethene and ethane at a chemical transfer facility in North Toronto. In Hinchee RE, Olfenbuttel RF, eds, On Site Bioreclamation. Butterworth-Heinemann, Boston, MA, USA, pp 147–171.Google Scholar
  92. Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC. 1994. Aerobic mineralization of trichloroethylene, vinyl chloride and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548.Google Scholar
  93. Mars AE, Houwing J, Dolfing J, Janssen DB. 1996. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl Environ Microbiol 62:886–891.Google Scholar
  94. Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH. 1995. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61:3928–3933.Google Scholar
  95. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.CrossRefGoogle Scholar
  96. Maymó-Gatell X, Anguish T, Zinder SH. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195. Appl Environ Microbiol 65:3108–3113.Google Scholar
  97. Maymó-Gatell X, Nijenhuis I, Zinder SH. 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by Dehalococcoides ethenogenes. Environ Sci Technol 35:516–521.CrossRefGoogle Scholar
  98. Mazur CS, Jones J. 2001. Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ Sci Technol 35:4783–4788.CrossRefGoogle Scholar
  99. McCarty PL. 1996. Biotic and abiotic transformations of chlorinated solvents in ground water. Proceedings, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509, pp 5–9.Google Scholar
  100. McCarty PL, Reinhard M. 1993. Biological and chemical transformations of halogenated aliphatic compounds in aquatic and terrestrial environments. In Oremland RS, ed, The Biogeochemistry of Global Change: Radiative Trace Gases. Chapman & Hall, Inc., New York, NY, USA, pp 839–852.CrossRefGoogle Scholar
  101. McCarty PL, Semprini L. 1994. Ground-water treatment for chlorinated solvents. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 87–116.Google Scholar
  102. Mohn WW, Tiedje JM. 1992. Microbial reductive dehalogenation. Microbiol Rev 56:482–507.Google Scholar
  103. Moore AT, Vira A, Fogel S. 1989. Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator. Environ Sci Technol 23:403–406.CrossRefGoogle Scholar
  104. Nelson MJK, Montgomery SO, O’Neill EJ, Pritchard PH. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52:383–384.Google Scholar
  105. Odum JM, Tabinowski J, Lee MD, Fathepure BZ. 1995. Anaerobic biodegradation of chlorinated solvents: Comparative laboratory study of aquifer microcosms. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 17–24.Google Scholar
  106. Phelps TJ, Malachowsky K, Schram RM, White DC. 1991. Aerobic mineralization of vinyl chloride by a bacterium of the order Actinomycetales. Appl Environ Microbiol 57:1252–1254.Google Scholar
  107. Reij MW, Kieboom J, de Bont JAM, Hartmans S. 1995. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Appl Environ Microbiol 61:2936–2942.Google Scholar
  108. Rosner BM, McCarty PL, Spormann AM. 1997. In vitro studies of reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63:4139–4144.Google Scholar
  109. Ryoo D, Shim H, Canada K, Barbieri P, Wood TK. 2000. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Psuedomonas stutzeri OX1. Nat Biotechnol 18:775–778.CrossRefGoogle Scholar
  110. Schink B. 1984. Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch Microbiol 137:250–255.CrossRefGoogle Scholar
  111. Schink B. 1994. Diversity, ecology and isolation of acetogenic bacteria. In Drake HL, ed, Acetogenesis. Chapman & Hall, New York, NY, USA, pp 197–235CrossRefGoogle Scholar
  112. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G. 1995. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tertrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56.CrossRefGoogle Scholar
  113. Semprini L. 1995. In situ bioremediation of chlorinated solvents. Environ Health Perspectives 103:101–105.Google Scholar
  114. Sharma PK, McCarty PL. 1996. Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol 62:761–765.Google Scholar
  115. Shelton DR, Tiedje JM. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48:840–848.Google Scholar
  116. Shim H, Ryoo D, Barbieri P, Wood TK. 2001. Aerobic degradation of mixtures of tetrachlorethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Psuedomonas stutzeri OX1. Appl Microbiol Biotechnol 56:265–269.CrossRefGoogle Scholar
  117. Smatlak CR, Gossett JM, Zinder SH. 1996. Comparative kinetic of hydrogen utilization for reductive dechlorination of tetrachlorethene and methanogenesis in an enrichment culture. Environ Sci Technol 30:2850–2858.CrossRefGoogle Scholar
  118. Sorenson KS, Peterson LN, Hinchee RE, Ely RL. 2000. An evaluation of aerobic trichloroethene attenuation using first-order rate estimation. Bioremediation J 4:337–357.CrossRefGoogle Scholar
  119. Terzenbach DP, Blaut M. 1994. Transformation of tetrachlorethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218.CrossRefGoogle Scholar
  120. Townsend GT, Suflita JM. 1997. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Appl Environ Microbiol 63:3594–3599.Google Scholar
  121. Tsien HC, Brusseau GA, Hanson RS, Wackett LP. 1989. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55:3155–3161.Google Scholar
  122. USEPA (U.S. Environmental Protection Agency). 1997. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA Office of Solid Waste and Emergency Response Directive 9200.4-17. USEPA, Washington, DC, USA.Google Scholar
  123. Vannelli T, Logan M, Arciero DM, Hooper AB. 1990. Degradation of halogenated aliphatic compounds by the ammonium-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 56:1169–1171.Google Scholar
  124. Verce MF, Ulrich RL, Freedman DL. 2000. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 66:3535–3542.CrossRefGoogle Scholar
  125. Verce MF, Ulrich RL, Freedman DL. 2001. Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environ Sci Technol 35:4242–4251.CrossRefGoogle Scholar
  126. Verce MF, Gunsch CK, Danko AS, Freedman DL. 2002. Cometabolism of cis-1,2-dichlorethene by aerobic cultures grown on vinyl chloride as the primary substrate. Environ Sci Technol 36: 2171–2177.CrossRefGoogle Scholar
  127. Vogel TM. 1994. Natural bioremediation of chlorinated solvents. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 201–225Google Scholar
  128. Vogel TM, McCarty PL. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1080–1083.Google Scholar
  129. Vogel TM, Criddle CS, McCarty PL. 1987. Transformation of halogenated aliphatic compounds. Environ. Sci Technol 21:722–736.CrossRefGoogle Scholar
  130. Weaver JW, Wilson JT, Kampbell DH. 1996. Extraction of degradation rate constants from the St. Joseph, Michigan, trichloroethene site. Proceedings, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. USEPA, Washington, DC, USA, pp 69–73.Google Scholar
  131. Wiedemeier TH, Wilson JT, Kampbell DH. 1996. Natural attenuation of chlorinated aliphatic hydrocarbons at Plattsburg Air Force Base, New York. Proceedings, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. USEPA, Washington, DC, USA, pp 74–82.Google Scholar
  132. Wiedemeier TH, Swanson MA, Moutoux DE, Gordon EK, Wilson JT, Wilson BH, Kampbell DH, Haas PE, Miller RN, Hansen JE, Chapelle FH. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128. USEPA, Washington DC, USA.Google Scholar
  133. Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT. 1999. Intrinsic bioremediation of chlorinated contaminants. In Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley and Sons, New York, NY, USA, pp 241–297.CrossRefGoogle Scholar
  134. Wild A, Herman R, Leisinger T. 1996. Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation J 7:507–511.CrossRefGoogle Scholar
  135. Wilson JT, Wilson BH. 1985. Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242–243.Google Scholar
  136. Wilson JT, Kampbell DH, Weaver JW, Imbrigiotta T, Ehlke T. 1995. A review of intrinsic bioremediation of trichloroethylene in ground water at Picatinny Arsenal, New Jersey, and St. Joseph, Michigan. Proceedings, Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, EPA/540/R-95/53, pp 13–16.Google Scholar
  137. Wu WM, Nye J, Hickey RF, Jain MK, Zeikus JG. 1995. Dechlorination of PCE and TCE to ethene using an anaerobic microbial consortium. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 45–52.Google Scholar
  138. Yang Y, McCarty PL. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597.CrossRefGoogle Scholar
  139. Yang Y, McCarty PL. 1999. Response to comment on: Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 33:2128–2128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul M. Bradley
    • 1
  • Francis H. Chapelle
    • 1
  1. 1.U. S. Geological SurveyColumbiaUSA

Personalised recommendations