Advertisement

Gene Therapy in the Retinal Degeneration Slow Model of Retinitis Pigmentosa

  • Xue Cai
  • Shannon M. Conley
  • Muna I. Naash
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)

Abstract

Human blinding disorders are often initiated by hereditary mutations that insult rod and/or cone photoreceptors and cause subsequent cellular death. Generally, the disease phenotype can be predicted from the specific mutation as many photoreceptor genes are specific to rods or cones; however certain genes, such as Retinal Degeneration Slow (RDS), are expressed in both cell types and cause different forms of retinal disease affecting rods, cones, or both photoreceptors. RDS is a transmembrane glycoprotein critical for photoreceptor outer segment disc morphogenesis, structural maintenance, and renewal. Studies using animal models with Rds mutations provide valuable insight into Rds gene function and regulation; and a better understanding of the physiology, pathology, and underlying degenerative mechanisms of inherited retinal disease. Furthermore, these models are an excellent tool in the process of developing therapeutic interventions for the treatment of inherited retinal degenerations. In this paper, we review these topics with particular focus on the use of rds models in gene therapy.

Keywords

Retinitis Pigmentosa Outer Segment Retinal Degeneration Retinal Disease Macular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acland GM, Aguirre GD, Bennett J et al (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12:1072–1082CrossRefPubMedGoogle Scholar
  2. Acland GM, Aguirre GD, Ray J et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92–95CrossRefPubMedGoogle Scholar
  3. Ali RR, Sarra GM, Stephens C et al (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310CrossRefPubMedGoogle Scholar
  4. Allen D, Kenna PF, Palfi A et al (2007) Development of strategies for conditional RNA interference. J Gene Med 9:287–298CrossRefPubMedGoogle Scholar
  5. Allocca M, Doria M, Petrillo M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118:1955–1964CrossRefPubMedGoogle Scholar
  6. Andrieu-Soler C, Bejjani RA, de Bizemont T et al (2006) Ocular gene therapy: a review of nonviral strategies. Mol Vis 12:1334–1347PubMedGoogle Scholar
  7. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239CrossRefPubMedGoogle Scholar
  8. Bok D, Yasumura D, Matthes MT et al (2002) Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 74:719–735CrossRefPubMedGoogle Scholar
  9. Boon CJ, den Hollander AI, Hoyng CB et al (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 27:213–235CrossRefPubMedGoogle Scholar
  10. Buch PK, MacLaren RE, Duran Y et al (2006) In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 14:700–709CrossRefPubMedGoogle Scholar
  11. Campochiaro PA, Nguyen QD, Shah SM et al (2006) Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther 17:167–176CrossRefPubMedGoogle Scholar
  12. Cayouette M, Behn D, Sendtner M et al (1998) Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci 18:9282–9293PubMedGoogle Scholar
  13. Cepko CL, Austin CP, Yang X et al (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93:589–595CrossRefPubMedGoogle Scholar
  14. Cheng T, Peachey NS, Li S et al (1997) The effect of peripherin/rds haploinsufficiency on rod and cone photoreceptors. J Neurosci 17:8118–8128PubMedGoogle Scholar
  15. Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105:15112–15117CrossRefPubMedGoogle Scholar
  16. Conley S, Nour M, Fliesler SJ et al (2007) Late-onset cone photoreceptor degeneration induced by R172W mutation in Rds and partial rescue by gene supplementation. Invest Ophthalmol Vis Sci 48:5397–5407CrossRefPubMedGoogle Scholar
  17. Connell G, Bascom R, Molday L et al (1991) Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proc Natl Acad Sci U S A 88:723–726CrossRefPubMedGoogle Scholar
  18. Danos O (2008) AAV vectors for RNA-based modulation of gene expression. Gene Ther 15:864–869CrossRefPubMedGoogle Scholar
  19. Ding XQ, Nour M, Ritter LM et al (2004) The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Hum Mol Genet 13:2075–2087CrossRefPubMedGoogle Scholar
  20. Farjo R, Naash MI (2006) The role of Rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet 27:117–122CrossRefPubMedGoogle Scholar
  21. Farjo R, Skaggs JS, Nagel BA et al (2006b) Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. J Cell Biol 173:59–68CrossRefPubMedGoogle Scholar
  22. Farjo R, Skaggs J, Quiambao AB et al (2006a) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 1:e38CrossRefPubMedGoogle Scholar
  23. Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21:857–864CrossRefPubMedGoogle Scholar
  24. Farrar GJ, Kenna P, Jordan SA et al (1991) A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature 354:478–480CrossRefPubMedGoogle Scholar
  25. Gorbatyuk M, Justilien V, Liu J et al (2007a) Preservation of photoreceptor morphology and function in P23H rats using an allele independent ribozyme. Exp Eye Res 84:44–52CrossRefPubMedGoogle Scholar
  26. Gorbatyuk M, Justilien V, Liu J et al (2007b) Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery. Vis Res 47:1202–1208CrossRefPubMedGoogle Scholar
  27. Hauswirth WW, LaVail MM, Flannery JG et al (2000) Ribozyme gene therapy for autosomal dominant retinal disease. Clin Chem Lab Med 38:147–153CrossRefPubMedGoogle Scholar
  28. Hauswirth WW, Lewin AS (2000) Ribozyme uses in retinal gene therapy. Prog Retin Eye Res 19:689–710CrossRefPubMedGoogle Scholar
  29. Kajiwara K, Hahn LB, Mukai S et al (1991) Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 354:480–483CrossRefPubMedGoogle Scholar
  30. Kedzierski W, Lloyd M, Birch DG et al (1997) Generation and analysis of transgenic mice expressing P216L-substituted rds/peripherin in rod photoreceptors. Invest Ophthalmol Vis Sci 38:498–509PubMedGoogle Scholar
  31. Konstan MW, Davis PB, Wagener JS et al (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 15:1255–1269CrossRefPubMedGoogle Scholar
  32. LaVail MM, Yasumura D, Matthes MT et al (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592–602PubMedGoogle Scholar
  33. LaVail MM, Yasumura D, Matthes MT et al (2000) Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci U S A 97:11488–11493CrossRefPubMedGoogle Scholar
  34. Liang FQ, Aleman TS, Dejneka NS et al (2001) Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther 4:461–472CrossRefPubMedGoogle Scholar
  35. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248CrossRefPubMedGoogle Scholar
  36. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61PubMedGoogle Scholar
  37. Mueller C, Flotte TR (2008) Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15:858–863CrossRefPubMedGoogle Scholar
  38. Nour M, Ding XQ, Stricker H et al (2004) Modulating expression of peripherin/rds in transgenic mice: critical levels and the effect of overexpression. Invest Ophthalmol Vis Sci 45:2514–2521CrossRefPubMedGoogle Scholar
  39. Nour M, Fliesler SJ, Naash MI (2008) Genetic supplementation of RDS alleviates a loss-of-function phenotype in C214S model of retinitis pigmentosa. Adv Exp Med Biol 613:129–138CrossRefPubMedGoogle Scholar
  40. Nystuen AM, Sachs AJ, Yuan Y et al (2008) A novel mutation in Prph2, a gene regulated by Nr2e3, causes retinal degeneration and outer-segment defects similar to Nr2e3 (rd7/rd7) retinas. Mamm Genome 9:623–633CrossRefGoogle Scholar
  41. O’Reilly M, Palfi A, Chadderton N et al (2007) RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81:127–135CrossRefPubMedGoogle Scholar
  42. Rhee KD, Ruiz A, Duncan JL et al (2007) Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 48:1389–1400CrossRefPubMedGoogle Scholar
  43. Sarra GM, Stephens C, de Alwis M et al (2001) Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 10:2353–2361CrossRefPubMedGoogle Scholar
  44. Schlichtenbrede FC, MacNeil A, Bainbridge JW et al (2003) Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Ther 10:523–527CrossRefPubMedGoogle Scholar
  45. Schlichtenbrede FC, da Cruz L, Stephens C et al (2003) Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 5:757–764CrossRefPubMedGoogle Scholar
  46. Stricker HM, Ding XQ, Quiambao A et al (2005) The Cys214–>Ser mutation in peripherin/rds causes a loss-of-function phenotype in transgenic mice. Biochem J 388:605–613CrossRefPubMedGoogle Scholar
  47. van Nie R, Ivanyi D, Demant P (1978) A new H-2-linked mutation, rds, causing retinal degeneration in the mouse. Tissue Antigens 12:106–108CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations