Photoreceptor Guanylate Cyclases and cGMP Phosphodiesterases in Zebrafish

  • Ross F. Collery
  • Breandán N. Kennedy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


Tightly regulated control of cGMP levels is critical for proper functioning of photoreceptors, and mutations in cGMP synthesis or degradation factors can lead to various forms of retinal disorder. Here we review heterogenous human retinal disorders associated with mutant retinal guanylate cyclases (RetGCs) and phosphodiesterase 6 (PDE6), and describe how zebrafish are being used to examine phototransduction components and their roles in these diseases. Though mutations in RetGCs and PDE6 lead to retinal disorders, there is a lack of molecular and biochemical data on routes of subsequent photoreceptor degeneration and visual impairment. Use of animal model systems provides important information to connect in vitro biochemical analyses of mutant genes with clinically observed pathologies of human retinal diseases. Zebrafish are an excellent in vivo system to generate animal models of human retinal disorders and study photoreceptor components, and have already provided valuable data on retinal diseases caused by phototransduction component mutations.


cGMP Level Photoreceptor Outer Segment Photoreceptor Degeneration Single Amino Acid Change Retinal Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187CrossRefPubMedGoogle Scholar
  2. Chang B, Hawes NL, Hurd RE et al (2001) A new mouse model of cone photoreceptor function loss (cpfl1). IOVS 42(Suppl.):S527 (Abstract)Google Scholar
  3. Chang B, Hawes NL, Hurd RE et al (2002) Retinal degeneration mutants in the mouse. Vision Res 42(4):517–525CrossRefPubMedGoogle Scholar
  4. Collery RM, Cederlund L, Smyth VA et al (2006) Applying transgenic zebrafish technology to study the retina. Adv Exp Med Biol 572:201–207CrossRefPubMedGoogle Scholar
  5. Duda T, Koch KW (2002) Retinal diseases linked with photoreceptor guanylate cyclase. Mol Cell Biochem 230(1–2):129–138CrossRefPubMedGoogle Scholar
  6. Gal A, Orth U, Baehr W et al (1994) Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet 7(4):551PubMedGoogle Scholar
  7. Gao YQ, Danciger M, Zhao DY et al (1996) Screening of the PDE6B gene in patients with autosomal dominant retinitis pigmentosa. Exp Eye Res 62(2):149–154CrossRefPubMedGoogle Scholar
  8. Goldsmith P, Harris WA (2003) The zebrafish as a tool for understanding the biology of visual disorders. Semin Cell Dev Biol 14(1):11–18CrossRefPubMedGoogle Scholar
  9. Hisatomi O, Honkawa H, Imanishi Y et al (1999) Three kinds of guanylate cyclase expressed in medaka photoreceptor cells in both retina and pineal organ. Biochem Biophys Res Commun 255(2):216–220CrossRefPubMedGoogle Scholar
  10. Huang SH, Pittler SJ, Huang X et al (1995) Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet 11(4):468–471CrossRefPubMedGoogle Scholar
  11. Ionita MA, Pittler SJ (2007) Focus on molecules: rod cGMP phosphodiesterase type 6. Exp Eye Res 84(1):1–2CrossRefPubMedGoogle Scholar
  12. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82(3):769–824PubMedGoogle Scholar
  13. Kelsell RE, Gregory-Evans K, Payne AM et al (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7(7):1179–1184CrossRefPubMedGoogle Scholar
  14. Maddison LA, Lu J, Victoroff T, Scott E, Baier H, Chen W (2009). A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration. Mol Genet Genomics 281(5):551–563CrossRefPubMedGoogle Scholar
  15. Muto A, Orger MB, Wehman AM et al (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1(5):e66CrossRefPubMedGoogle Scholar
  16. Nishiwaki Y, Komori A, Sagara H et al (2008) Mutation of cGMP phosphodiesterase 6α'-subunit gene causes progressive degeneration of cone photoreceptors in zebrafish. Mech Dev 125(11–12):932–946CrossRefPubMedGoogle Scholar
  17. Perrault I, Rozet JM, Gerber S et al (2000) Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 8(8):578–582CrossRefPubMedGoogle Scholar
  18. Piri N, Gao YQ, Danciger M et al (2005) A substitution of G to C in the cone cGMP-phosphodiesterase gamma subunit gene found in a distinctive form of cone dystrophy. Ophthalmology 112(1):159–166CrossRefPubMedGoogle Scholar
  19. Pugh EN Jr, Duda T, Sitaramayya A et al (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17(5):429–473CrossRefPubMedGoogle Scholar
  20. Ramamurthy V, Tucker C, Wilkie SE et al (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem 276(28):26218–26229CrossRefPubMedGoogle Scholar
  21. 22. Rätscho N, Scholten A, Scholten A et al (2009) Expression profiles of three novel sensory guanylate cyclases and guanylate cyclase-activating proteins in the zebrafish retina. Biochim Biophys Acta e-pub ahead of printGoogle Scholar
  22. Seimiya M, Kusakabe T, Suzuki N (1997) Primary structure and differential gene expression of three membrane forms of guanylyl cyclase found in the eye of the teleost Oryzias latipes. J Biol Chem 272(37):23407–23417CrossRefPubMedGoogle Scholar
  23. Stearns G, Evangelista M, Fadool JM et al (2007) A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J Neurosci 27(50):13866–13874CrossRefPubMedGoogle Scholar
  24. Tsang SH, Gouras P, Yamashita CK et al (1996) Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 272(5264):1026–1029CrossRefPubMedGoogle Scholar
  25. Tucker CL, Ramamurthy V, Pina AL et al (2004) Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects. Mol Vis 10:297–303PubMedGoogle Scholar
  26. Tucker CL, Woodcock SC, Kelsell RE et al (1999) Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci U S A 96(16):9039–9044CrossRefPubMedGoogle Scholar
  27. Vihtelic TS, Fadool JM, Gao J et al (2005) Expressed sequence tag analysis of zebrafish eye tissues for NEIBank. Mol Vis 11:1083–1100PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland

Personalised recommendations