Advertisement

Structural and Functional Phenotyping in the Cone-Specific Photoreceptor Function Loss 1 (cpfl1) Mouse Mutant – A Model of Cone Dystrophies

  • M. Dominik Fischer
  • Naoyuki Tanimoto
  • Susanne C. Beck
  • Gesine Huber
  • Karin Schaeferhoff
  • Stylianos Michalakis
  • Olaf Riess
  • Bernd Wissinger
  • Martin Biel
  • Michael Bonin
  • Mathias W. Seeliger
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)

Abstract

Purpose: We performed a comprehensive in vivo assessment of retinal morphology and function in cpfl1 (cone photoreceptor function loss 1) mice to better define the disease process in this model of cone dystrophies.

Methods: Mice were examined using electroretinography (ERG), confocal scanning laser ophthalmoscopy (cSLO), and spectral domain optical coherence tomography (SD-OCT). Cross-breeding cpfl1 mutants with mice expressing green fluorescent protein (GFP) under control of red-green cone opsin promoter allowed for an in vivo timeline analysis of number and distribution of cone photoreceptors using the autofluorescence (AF) mode of the cSLO.

Results: Light-evoked responses of cone origin were practically absent in cpfl1 mice, whereas rod system function appeared normal. In vivo imaging revealed a progressive loss of cone photoreceptors with a major decline between PW4 and PW8, while retinal architecture and layering remained essentially intact.

Discussion: While the absence of substantial light-evoked cone responses in the cpfl1 mice is evident from early on, the course of physical cone degeneration is protracted and has a major drop between PW4 and PW8. However, these changes do not lead to significant alterations in retinal architecture, probably due to the relatively low number and wide dissemination of cone photoreceptor cells within the afoveate mouse retina.

Keywords

Green Fluorescent Protein Expression Spectral Domain Optical Coherence Tomography Cone Photoreceptor Cone Dystrophy Confocal Scanning Laser Ophthalmoscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chang B, Hawes NL, Hurd RE et al (2002) Retinal degeneration mutants in the mouse. Vis Res 42:517–525CrossRefPubMedGoogle Scholar
  2. 2. Chang B, Hawes NL, Hurd RE et al (2001) A new mouse model of cone photoreceptor function loss (cpfl1) Invest Ophthalmol Vis Sci 42:ARVO E-Abstract S527Google Scholar
  3. Seeliger MW, Grimm C, Stahlberg F et al (2001) New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat Genet 29:70–74CrossRefPubMedGoogle Scholar
  4. Seeliger MW, Beck SC, Pereyra-Munoz N et al (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vis Res 45:3512–3519CrossRefPubMedGoogle Scholar
  5. Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK et al (2008) Morphological changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 49:3095–3099CrossRefPubMedGoogle Scholar
  6. Biel M, Seeliger M, Pfeifer A et al (1999) Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci U S A 96:7553–7557CrossRefPubMedGoogle Scholar
  7. Jaissle GB, May CA, Reinhard J et al (2001) Evaluation of the rhodopsin knockout mouse as a model of pure cone function. Invest Ophthalmol Vis Sci 42:506–513PubMedGoogle Scholar
  8. Fei Y, Hughes TE (2001) Transgenic expression of the jellyfish green fluorescent protein in the cone photoreceptors of the mouse. Vis Neurosci 18:615–623CrossRefPubMedGoogle Scholar
  9. Tanimoto N, Muehlfriedel RL, Fischer MD et al (2009) Vision tests in the mouse: functional phenotyping with electroretinography. Front Biosci 14:2730–2737CrossRefPubMedGoogle Scholar
  10. 10. Wissinger B, Chang B, Dangel S et al. (2007) Cone phosphodiesterase defects in the murine cpfl1 mutant and human achromatopsia patients Invest Ophthalmol Vis Sci 48:ARVO E-Abstract B122Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Dominik Fischer
    • 1
  • Naoyuki Tanimoto
    • 2
  • Susanne C. Beck
    • 2
  • Gesine Huber
    • 2
  • Karin Schaeferhoff
    • 3
  • Stylianos Michalakis
    • 4
  • Olaf Riess
    • 5
  • Bernd Wissinger
    • 6
  • Martin Biel
    • 4
  • Michael Bonin
    • 3
  • Mathias W. Seeliger
    • 2
  1. 1.Division of Ocular NeurodegenerationInstitute for Ophthalmic Research, Centre for Ophthalmology, University of TuebingenTuebingenGermany
  2. 2.Division of Ocular NeurodegenerationInstitute for Ophthalmic Research, Centre for Ophthalmology, University of TuebingenTuebingenGermany
  3. 3.Microarray Facility Tuebingen, Institute of Human Genetics, University of TuebingenTuebingenGermany
  4. 4.Munich Center for Integrated Protein Science, CIPSM and Department PharmazieZentrum für Pharmaforschung, Ludwig-Maximilians-UniversityMunichGermany
  5. 5.Department of Medical GeneticsUniversity of TuebingenTuebingenGermany
  6. 6.Molecular Genetics LaboratoryInstitute for Ophthalmic Research, Centre for Ophthalmology, University of TuebingenTuebingenGermany

Personalised recommendations