Recent Insights into the Mechanisms Underlying Light-Dependent Retinal Degeneration from X. Laevis Models of Retinitis Pigmentosa

  • Orson L. Moritz
  • Beatrice M. Tam
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


We have recently developed transgenic X. laevis models of retinitis pigmentosa based on the rhodopsin P23H mutation in the context of rhodopsin cDNAs derived from several different species. The mutant rhodopsin in these animals is expressed at low levels, with levels of export from the endoplasmic reticulum to the outer segment that depend on the cDNA context. Retinal degeneration in these models demonstrates varying degrees of light dependence, with the highest light dependence coinciding with the highest ER export efficiency. Rescue of light dependent retinal degeneration by dark rearing is in turn dependent on the capacity of the mutant rhodopsin to bind chromophore. Our results indicate that rhodopsin chromophore can act in vivo as a pharmacological chaperone for P23H rhodopsin, and that light-dependent retinal degeneration caused by P23H rhodopsin is due to reduced chromophore binding.


Retinitis Pigmentosa Retinal Degeneration Cell Culture Study Retinal Degeneration K296R Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ablonczy Z, Knapp DR, Darrow R et al (2000) Mass spectrometric analysis of rhodopsin from light damaged rats. Mol Vis 6:109–115PubMedGoogle Scholar
  2. Berson EL (1980) Light deprivation and retinitis pigmentosa. Vision Res 20(12):1179–1184CrossRefPubMedGoogle Scholar
  3. Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676PubMedGoogle Scholar
  4. Cohen GB, Yang T, Robinson PR et al (1993) Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32(23):6111–6115CrossRefPubMedGoogle Scholar
  5. Goldberg AF, Molday RS (1996) Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc Natl Acad Sci U S A 93(24):13726–13730CrossRefPubMedGoogle Scholar
  6. Govardhan CP, Oprian DD (1994) Active site-directed inactivation of constitutively active mutants of rhodopsin. J Biol Chem 269(9):6524–6527PubMedGoogle Scholar
  7. Grayson C, Molday RS (2005) Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J Biol Chem 280(37):32521–32530CrossRefPubMedGoogle Scholar
  8. Hubbard R (1958) The thermal stability of rhodopsin and opsin. J Gen Physiol 42(2):259–280CrossRefPubMedGoogle Scholar
  9. Jin J, Heth CA, Roof DJ (1995) P23H mutant human opsin in transgenic murine retina: truncation of N-terminus and lack of glycosylation. Invest Ophthalmol Vis Sci 36(4):S424Google Scholar
  10. Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33(20):6121–6128CrossRefPubMedGoogle Scholar
  11. Lamb TD, Pugh EN Jr (2006) Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci 47(12):5137–5152CrossRefPubMedGoogle Scholar
  12. Noorwez SM, Kuksa V, Imanishi Y et al (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278(16):14442–14450CrossRefPubMedGoogle Scholar
  13. Noorwez SM, Malhotra R, McDowell JH et al (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279(16):16278–16284CrossRefPubMedGoogle Scholar
  14. Olsson JE, Gordon JW, Pawlyk BS et al (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9(5):815–830CrossRefPubMedGoogle Scholar
  15. Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol, 90(8):1060–1066CrossRefPubMedGoogle Scholar
  16. Samardzija M, Wenzel A, Naash M et al (2006) Rpe65 as a modifier gene for inherited retinal degeneration. Eur J Neurosci 23(4):1028–1034CrossRefPubMedGoogle Scholar
  17. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789CrossRefPubMedGoogle Scholar
  18. Sohocki MM, Daiger SP, Bowne SJ et al (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17(1):42–51CrossRefPubMedGoogle Scholar
  19. Sung CH, Schneider BG, Agarwal N et al (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 88(19):8840–8844CrossRefPubMedGoogle Scholar
  20. Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(8):3234–3241CrossRefPubMedGoogle Scholar
  21. Tam BM, Moritz OL (2007) Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J Neurosci 27(34):9043–9053CrossRefPubMedGoogle Scholar
  22. Zhang R, Oglesby E, Marsh-Armstrong N (2008) Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Exp Eye Res 86(4):612–621CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesUBC/VGH Eye Care CentreVancouverCanada
  2. 2.Department of Ophthalmology and Visual SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations