Skip to main content

PPAR Nuclear Receptors and Altered RPE Lipid Metabolism in Age-Related Macular Degeneration

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

The pathophysiology of ‘early’ dry age-related macular degeneration (ARMD), characterized by the accumulation of lipid and protein-rich sub-retinal deposits remains largely unknown. Accumulation and dysregulated turnover of lipids as well as extracellular matrix (ECM) molecules in sub-retinal pigment epithelial (RPE) deposits and Bruch’s membrane, itself an ECM, play a role in ARMD. Epidemiological studies have shown an increased risk for the disease associated with higher dietary intake of long chain poly-unsaturated fatty acids (LCPUFA) and specifically more so for n-6 versus n-3 fatty acids. PUFAs are membrane targets of lipid peroxidation and natural ligands for the nuclear receptors, peroxisome proliferator activated receptors (PPAR). Here we investigated the expression of genes involved in lipid metabolism and expression of the three isoforms of PPARs in an immortalized cell line of human RPE cells (ARPE19) in the presence or absence of fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DH, Mullins RF et al (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  CAS  PubMed  Google Scholar 

  • Anderson DH, Talaga KC et al (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78(2):243–256

    Article  CAS  PubMed  Google Scholar 

  • Arteel GE (2008) New role of plasminogen activator inhibitor-1 in alcohol-induced liver injury. J Gastroenterol Hepatol 23(Suppl 1):S54–S59

    Article  CAS  PubMed  Google Scholar 

  • Bird AC, Bressler NM et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39(5):367–374

    Article  CAS  PubMed  Google Scholar 

  • Canter JA, Olson LM et al (2008) Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS ONE 3(5):e2091

    Article  PubMed  Google Scholar 

  • Chawla A, Boisvert WA et al (2001) A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7(1):161–171

    Article  CAS  PubMed  Google Scholar 

  • Chinetti G, Fruchart JC et al (2001) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors with functions in the vascular wall. Z Kardiol 90(Suppl 3):125–132

    PubMed  Google Scholar 

  • Crabb JW, Miyagi M et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687

    Article  CAS  PubMed  Google Scholar 

  • Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117(3):329–339

    CAS  PubMed  Google Scholar 

  • Curcio CA, Presley JB et al (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81(6):731–741

    Article  CAS  PubMed  Google Scholar 

  • Edwards AO, Ritter R 3rd et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  CAS  PubMed  Google Scholar 

  • Fiotti N, Pedio M et al (2005) MMP-9 microsatellite polymorphism and susceptibility to exudative form of age-related macular degeneration. Genet Med 7(4):272–277

    Article  CAS  PubMed  Google Scholar 

  • Green WR (1999) Histopathology of age-related macular degeneration. Mol Vis 5:27

    CAS  PubMed  Google Scholar 

  • Hageman GS, Anderson DH et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227–7232

    Article  CAS  PubMed  Google Scholar 

  • Hageman GS, Luthert PJ et al (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732

    Article  CAS  PubMed  Google Scholar 

  • Hageman GS, Mullins RF et al (1999) Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB J 13(3):477–484

    CAS  PubMed  Google Scholar 

  • Haines JL, Hauser MA et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    Article  CAS  PubMed  Google Scholar 

  • Johnson LV, Leitner WP et al (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A 99(18):11830–11835

    Article  CAS  PubMed  Google Scholar 

  • Kersten S, Desvergne B et al (2000) Roles of PPARs in health and disease. Nature 405(6785):421–424

    Article  CAS  PubMed  Google Scholar 

  • Klein R, Klein BE et al (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114(2):253–262

    Article  PubMed  Google Scholar 

  • Klein RJ, Zeiss C et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    Article  CAS  PubMed  Google Scholar 

  • Malek G, Li CM et al (2003) Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am J Pathol 162(2):413–425

    CAS  PubMed  Google Scholar 

  • Moore KJ, Fitzgerald ML et al (2001) Peroxisome proliferator-activated receptors in macrophage biology: friend or foe? Curr Opin Lipidol 12(5):519–527

    Article  CAS  PubMed  Google Scholar 

  • Murata T, He S et al (2000) Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci 41(8):2309–2317

    CAS  PubMed  Google Scholar 

  • Nunn AV, Bell J et al (2007) The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. Nucl Recept 5(1):1

    Article  PubMed  Google Scholar 

  • Olefsky JM, Saltiel AR (2000) PPAR gamma and the treatment of insulin resistance. Trends Endocrinol Metab 11(9):362–368

    Article  CAS  PubMed  Google Scholar 

  • Ross RJ, Bojanowski CM et al (2007) The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci 48(3):1128–1132

    Article  PubMed  Google Scholar 

  • Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340

    Article  CAS  PubMed  Google Scholar 

  • SanGiovanni JP, Chew EY et al (2007) The relationship of dietary lipid intake and age-related macular degeneration in a case-control study: AREDS Report No. 20. Arch Ophthalmol 125(5):671–679

    Google Scholar 

  • SanGiovanni JP, Chew EY et al (2008) The relationship of dietary omega-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration: AREDS Report No. 23. Arch Ophthalmol 126(9):1274–1279

    Google Scholar 

  • Schmidt S, Klaver C et al (2002) A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genet 23(4):209–223

    Article  PubMed  Google Scholar 

  • Sime PJ (2008) The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis. J Investig Med 56(2):534–538

    CAS  PubMed  Google Scholar 

  • Yang Z, Camp NJ et al (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314(5801):992–993

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the International Retinal Research Foundation and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goldis Malek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Malek, G., Hu, P., Wielgus, A., Dwyer, M., Cousins, S. (2010). PPAR Nuclear Receptors and Altered RPE Lipid Metabolism in Age-Related Macular Degeneration. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_49

Download citation

Publish with us

Policies and ethics