The Role of Purinergic Receptors in Retinal Function and Disease

  • Michelle M. Ward
  • Theresa Puthussery
  • Kirstan A. Vessey
  • Erica L. Fletcher
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


Extracellular ATP acts as a neurotransmitter in the central and peripheral nervous systems. In this review, the role of purinergic receptors in neuronal signaling and bi-directional glial-neuronal communication in the retina will be considered. There is growing evidence that a range of P2X and P2Y receptors are expressed on most classes of retinal neurons and that activation of P2 receptors modulates retinal function. Furthermore, neuronal control of glial function is achieved through neuronal release of ATP and activation of P2Y receptors expressed by Müller cells. Altered purinergic signaling in Müller cells has been implicated in gliotic changes in the diseased retina and furthermore, elevations in extracellular ATP may lead to apoptosis of retinal neurons.


Retinal Detachment Amacrine Cell Purinergic Receptor Calcium Wave Rabbit Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbracchio MP, Burnstock G, Verkhratsky A et al (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29CrossRefPubMedGoogle Scholar
  2. Eisenfeld AJ, Bunt-Milam AH, Sarthy PV (1984) Müller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina. Invest Ophthalmol Vis Sci 25:1321–1328PubMedGoogle Scholar
  3. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436CrossRefPubMedGoogle Scholar
  4. Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633CrossRefPubMedGoogle Scholar
  5. Francke M, Faude F, Pannicke T et al (2005) Glial cell-mediated spread of retinal degeneration during detachment: a hypothesis based upon studies in rabbits. Vision Res 45:2256–2267CrossRefPubMedGoogle Scholar
  6. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324CrossRefPubMedGoogle Scholar
  7. Franke H, Klimke K, Brinckmann U et al (2005) P2X(7) receptor-mRNA and -protein in the mouse retina; changes during retinal degeneration in BALBCrds mice. Neurochem Int 47: 235–242CrossRefPubMedGoogle Scholar
  8. Franke H, Krugel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644CrossRefPubMedGoogle Scholar
  9. Fries JE, Goczalik IM, Wheeler-Schilling TH et al (2005) Identification of P2Y receptor subtypes in human müller glial cells by physiology, single cell RT-PCR, and immunohistochemistry. Invest Ophthalmol Vis Sci 46:3000–3007CrossRefPubMedGoogle Scholar
  10. Fries JE, Wheeler-Schilling TH, Guenther E et al (2004) Expression of P2Y1, P2Y2, P2Y4, and P2Y6 receptor subtypes in the rat retina. Invest Ophthalmol Vis Sci 45:3410–3417CrossRefPubMedGoogle Scholar
  11. Hassinger TD, Guthrie PB, Atkinson PB et al (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci U S A 93:13268–13273CrossRefPubMedGoogle Scholar
  12. Iandiev I, Uckermann O, Pannicke T et al (2006) Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci 47:2161–2171CrossRefPubMedGoogle Scholar
  13. Innocenti B, Pfeiffer S, Zrenner E et al (2004) ATP-induced non-neuronal cell permeabilization in the rat inner retina. J Neurosci 24:8577–8583CrossRefPubMedGoogle Scholar
  14. Jabs R, Guenther E, Marquordt K et al (2000) Evidence for P2X(3), P2X(4), P2X(5) but not for P2X(7) containing purinergic receptors in Müller cells of the rat retina. Brain Res Mol Brain Res 76:205–210CrossRefPubMedGoogle Scholar
  15. Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804PubMedGoogle Scholar
  16. Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245CrossRefPubMedGoogle Scholar
  17. Kaneda M, Ishii T, Hosoya T (2008) Pathway-dependent modulation by P2-purinoceptors in the mouse retina. Eur J Neurosci 28:128–136CrossRefPubMedGoogle Scholar
  18. Kaneda M, Ishii K, Morishima Y et al (2004) OFF-cholinergic-pathway-selective localization of P2X2 purinoceptors in the mouse retina. J Comp Neurol 476:103–111CrossRefPubMedGoogle Scholar
  19. Li Y, Holtzclaw LA, Russell JT (2001) Müller cell Ca2+ waves evoked by purinergic receptor agonists in slices of rat retina. J Neurophysiol 85:986–994PubMedGoogle Scholar
  20. Milenkovic I, Weick M, Wiedemann P et al (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220CrossRefPubMedGoogle Scholar
  21. Mitchell CH (2001) Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol 534:193–202CrossRefPubMedGoogle Scholar
  22. Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47:445–449CrossRefPubMedGoogle Scholar
  23. Moll V, Weick M, Milenkovic I et al (2002) P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 43:766–773PubMedGoogle Scholar
  24. Neal M, Cunningham J (1994) Modulation by endogenous ATP of the light-evoked release of ACh from retinal cholinergic neurones. Br J Pharmacol 113:1085–1087PubMedGoogle Scholar
  25. Neal MJ, Cunningham JR, Dent Z (1998) Modulation of extracellular GABA levels in the retina by activation of glial P2X-purinoceptors. Br J Pharmacol 124:317–322CrossRefPubMedGoogle Scholar
  26. Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223PubMedGoogle Scholar
  27. Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666PubMedGoogle Scholar
  28. Newman EA (2004) Glial modulation of synaptic transmission in the retina. Glia 47:268–274CrossRefPubMedGoogle Scholar
  29. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci 25:5502–5510CrossRefPubMedGoogle Scholar
  30. Newman EA, Volterra A (2004) Glial control of synaptic function. Glia 47:207–208CrossRefPubMedGoogle Scholar
  31. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275:844–847CrossRefPubMedGoogle Scholar
  32. Newman EA, Zahs KR (1998) Modulation of neuronal activity by glial cells in the retina. J Neurosci 18:4022–4028PubMedGoogle Scholar
  33. Pannicke T, Fischer W, Biedermann B et al (2000) P2X7 receptors in Müller glial cells from the human retina. J Neurosci 20:5965–5972PubMedGoogle Scholar
  34. Puthussery T, Fletcher EL (2004) Synaptic localization of P2X7 receptors in the rat retina. J Comp Neurol 472:13–23CrossRefPubMedGoogle Scholar
  35. Puthussery T, Fletcher EL (2006) P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. J Comp Neurol 496:595–609CrossRefPubMedGoogle Scholar
  36. Puthussery T, Fletcher EL (2007) Neuronal expression of P2X3 purinoceptors in the rat retina. Neuroscience 146:403–414CrossRefPubMedGoogle Scholar
  37. Puthussery T, Fletcher EL (2009) Extracellular ATP induces retinal photoreceptor apoptosis through activation of purinoceptors in rodents. J Comp Neurol 513:430–440CrossRefPubMedGoogle Scholar
  38. Puthussery T, Yee P, Vingrys AJ et al (2006) Evidence for the involvement of purinergic P2X receptors in outer retinal processing. Eur J Neurosci 24:7–19CrossRefPubMedGoogle Scholar
  39. Reigada D, Lu W, Zhang M et al (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396–404CrossRefPubMedGoogle Scholar
  40. Resta V, Novelli E, Vozzi G et al (2007) Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 25:2741–2754CrossRefPubMedGoogle Scholar
  41. Santos PF, Caramelo OL, Carvalho AP (1999) Characterization of ATP release from cultures enriched in cholinergic amacrine-like neurons. J Neurobiol 41:340–348CrossRefPubMedGoogle Scholar
  42. Sawada K, Echigo N, Juge N et al (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686CrossRefPubMedGoogle Scholar
  43. Sperlágh B, Magloczky Z, Vizi ES et al (1998) The triangular septal nucleus as the major source of ATP release in the rat habenula: a combined neurochemical and morphological study. Neuroscience 86:1195–1207CrossRefPubMedGoogle Scholar
  44. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385CrossRefPubMedGoogle Scholar
  45. Taschenberger H, Juttner R, Grantyn R (1999) Ca2+-permeable P2X receptor channels in cultured rat retinal ganglion cells. J Neurosci 19:3353–3366PubMedGoogle Scholar
  46. Uckermann O, Uhlmann S, Weick M et al (2003) Upregulation of purinergic P2Y receptor-mediated calcium responses in glial cells during experimental detachment of the rabbit retina. Neurosci Lett 338:131–134CrossRefPubMedGoogle Scholar
  47. Ward MM, Fletcher EL (2009) Subsets of retinal neurons and glia express P2Y1 receptors. Neuroscience 160:555–566CrossRefPubMedGoogle Scholar
  48. Ward MM, Puthussery T, Fletcher EL (2008) Localization and possible function of P2Y(4) receptors in the rodent retina. Neuroscience 155:1262–1274Google Scholar
  49. Wheeler-Schilling TH, Marquordt K, Kohler K et al (2001) Identification of purinergic receptors in retinal ganglion cells. Brain Res Mol Brain Res 92:177–180CrossRefPubMedGoogle Scholar
  50. Zhang X, Zhang M, Laties AM et al (2005) Stimulation of P2X7 receptors elevates Ca2+ and kills retinal ganglion cells. Invest Ophthalmol Vis Sci 46:2183–2191CrossRefPubMedGoogle Scholar
  51. Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618CrossRefPubMedGoogle Scholar
  52. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michelle M. Ward
    • 1
  • Theresa Puthussery
    • 2
  • Kirstan A. Vessey
    • 1
  • Erica L. Fletcher
    • 1
  1. 1.Department of Anatomy and Cell BiologyUniversity of MelbourneParkvilleAustralia
  2. 2.Department of OphthalmologyCasey Eye Institute, Oregon Health & Science UniversityPortlandUSA

Personalised recommendations