Advances in Imaging of Stargardt Disease

  • Y. Chen
  • A. Roorda
  • J.L. Duncan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


Stargardt disease (STGD1) is an autosomal-recessively inherited condition often associated with mutations in ABCA4 and characterized by accumulation of autofluorescent lipofuscin deposits in the retinal pigment epithelium (RPE). Non-invasive imaging techniques including fundus autofluorescence (FAF), spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO) have the potential to improve understanding of vision loss in patients with STGD. We describe a comprehensive approach to the study of patients with STGD. Measures of retinal structure and FAF were correlated with visual function including best-corrected visual acuity (BCVA), color vision, kinetic and static perimetry, fundus-guided microperimetry and full-field and multifocal electroretinography. Mutation analysis of the ABCA4 gene was carried out by sequencing the complete coding region. Preliminary data suggest that a combination of imaging modalities may provide a sensitive measure of disease progression and response to experimental therapies in patients with STGD.


Optical Coherence Tomography Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Spectral Domain Optical Coherence Tomography Central Foveal Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by a Career Development Award, Physician Scientist Award and Unrestricted Grant from Research to Prevent Blindness (JLD); a Career Development Award and Clinical Center Grant from the Foundation Fighting Blindness (JLD, AR); NIH-NEI grants EY00415, EY002162 (JLD), EY014375 (AR); That Man May See, Inc. (JLD); The Bernard A. Newcomb Macular Degeneration Fund (JLD); Hope for Vision (JLD); and the Karl Kirchgessner Foundation (JLD).


  1. Allikmets R (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 17:122PubMedGoogle Scholar
  2. Armstrong JD, Meyer D, Xu S et al (1998) Long-term follow-up of Stargardt’s disease and fundus flavimaculatus. Ophthalmology 105:448–457CrossRefPubMedGoogle Scholar
  3. Bellmann C, Rubin GS, Kabanarou SA et al (2003) Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes. Br J Ophthalmol 87:1381–1386CrossRefPubMedGoogle Scholar
  4. Bither PP, Berns LA (1988) Stargardt’s disease: a review of the literature. J Am Optom Assoc 59:106–111PubMedGoogle Scholar
  5. Boon CJ, Jeroen Klevering B, Keunen JE et al (2008) Fundus autofluorescence imaging of retinal dystrophies. Vision Res 48:2569–2577CrossRefPubMedGoogle Scholar
  6. Choi SS, Doble N, Hardy JL et al (2006) In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. Invest Ophthal Vis Sci 47:2080–2092CrossRefPubMedGoogle Scholar
  7. Cideciyan AV, Aleman TS, Swider M et al (2004) Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet 13:525–534CrossRefPubMedGoogle Scholar
  8. Delori FC, Dorey CK, Staurenghi G et al (1995a) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthal Vis Sci 36:718–729PubMedGoogle Scholar
  9. Delori FC, Fleckner MR, Goger DG et al (2000) Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthal Vis Sci 41:496–504PubMedGoogle Scholar
  10. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthal Vis Sci 42:1855–1866PubMedGoogle Scholar
  11. Delori FC, Staurenghi G, Arend O et al (1995b) In vivo measurement of lipofuscin in Stargardt’s disease–fundus flavimaculatus. Invest Ophthal Vis Sci 36:2327–2331PubMedGoogle Scholar
  12. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27:45–88CrossRefPubMedGoogle Scholar
  13. Duncan JL, Zhang Y, Gandhi J et al (2007) High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest Ophthal Vis Sci 48:3283–3291CrossRefPubMedGoogle Scholar
  14. Ergun E, Hermann B, Wirtitsch M et al (2005) Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthal Vis Sci 46:310–316CrossRefPubMedGoogle Scholar
  15. Fishman GA, Farber M, Patel BS et al (1987) Visual acuity loss in patients with Stargardt’s macular dystrophy. Ophthalmology 94:809–814PubMedGoogle Scholar
  16. Forte R, Cennamo GL, Finelli ML et al (2009) Comparison of time domain stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye (London) 23:2071–2078CrossRefPubMedGoogle Scholar
  17. Gupta V, Gupta P, Singh R et al (2008) Spectral-domain cirrus high-definition optical coherence tomography is better than time-domain stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Am J Ophthalmol 145:1018–1022CrossRefPubMedGoogle Scholar
  18. Kitiratschky VB, Grau T, Bernd A et al (2008) ABCA4 gene analysis in patients with autosomal recessive cone and cone rod dystrophies. Eur J Hum Genet 16:812–819CrossRefPubMedGoogle Scholar
  19. Klevering BJ, Blankenagel A, Maugeri A et al (2002) Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene. Invest Ophthal Vis Sci 43:1980–1985PubMedGoogle Scholar
  20. Leung CK, Cheung CY, Weinreb RN et al (2008) Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthal Vis Sci 49:4893–4897CrossRefPubMedGoogle Scholar
  21. Li KY, Roorda A (2007) Automated identification of cone photoreceptors in adaptive optics retinal images. J Opt Soc Am A Opt Image Sci Vis 24:1358–1363CrossRefPubMedGoogle Scholar
  22. Lois N, Halfyard AS, Bird AC et al (2000) Quantitative evaluation of fundus autofluorescence imaged “in vivo” in eyes with retinal disease. Br J Ophthalmol 84:741–745CrossRefPubMedGoogle Scholar
  23. Lois N, Halfyard AS, Bird AC et al (2004) Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol 138:55–63CrossRefPubMedGoogle Scholar
  24. Lois N, Holder GE, Fitzke FW et al (1999) Intrafamilial variation of phenotype in stargardt macular dystrophy-fundus flavimaculatus. Invest Ophthal Vis Sci 40:2668–2675PubMedGoogle Scholar
  25. Martin JA, Roorda A (2005) Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology 112:2219–2224CrossRefPubMedGoogle Scholar
  26. Podoleanu AG, Rosen RB (2008) Combinations of techniques in imaging the retina with high resolution. Prog Retin Eye Res 27:464–499CrossRefPubMedGoogle Scholar
  27. Radu RA, Mata NL, Bagla A et al (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933CrossRefPubMedGoogle Scholar
  28. Roorda A, Romero-Borja F, Donnelly W, III et al (2002) Adaptive optics scanning laser ophthalmoscopy. Opt Express 10:405–412PubMedGoogle Scholar
  29. Roorda A, Zhang Y, Duncan JL (2007) High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthal Vis Sci 48:2297–2303CrossRefPubMedGoogle Scholar
  30. Rotenstreich Y, Fishman GA, Anderson RJ (2003) Visual acuity loss and clinical observations in a large series of patients with stargardt disease. Ophthalmology 110:1151–1158CrossRefPubMedGoogle Scholar
  31. Sharp PF, Manivannan A, Xu H et al (2004) The scanning laser ophthalmoscope–a review of its role in bioscience and medicine. Phys Med Biol 49:1085–1096CrossRefPubMedGoogle Scholar
  32. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606CrossRefPubMedGoogle Scholar
  33. Sparrow JR, Fishkin N, Zhou J et al (2003) A2E, a byproduct of the visual cycle. Vision Res 43:2983–2990CrossRefPubMedGoogle Scholar
  34. Sunness JS, Ziegler MD, Applegate CA (2006) Issues in quantifying atrophic macular disease using retinal autofluorescence. Retina 26:666–672CrossRefPubMedGoogle Scholar
  35. von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412CrossRefGoogle Scholar
  36. von Ruckmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthal Vis Sci 38:478–486Google Scholar
  37. Wabbels B, Demmler A, Paunescu K et al (2006) Fundus autofluorescence in children and teenagers with hereditary retinal diseases. Graefes Arch Clin Exp Ophthalmol 244:36–45CrossRefPubMedGoogle Scholar
  38. Wolfing JI, Chung M, Carroll J et al (2006) High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology 113:1019.e1CrossRefPubMedGoogle Scholar
  39. Yoon MK, Roorda A, Zhang Y et al (2009) Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation. Invest Ophthal Vis Sci 50:1838–1847CrossRefPubMedGoogle Scholar
  40. Zhang Y, Poonja S, Roorda A (2006) MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt Lett 31:1268–1270CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.School of OptometryUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of OphthalmologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations