Misfolded Proteins and Retinal Dystrophies

  • Jonathan H. Lin
  • Matthew M. LaVail
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina.


Endoplasmic Reticulum Retinal Pigment Epithelial Unfolded Protein Response Retinitis Pigmentosa Retinal Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Victory Joseph for helpful comments. This work was funded by NIH grants EY01919, EY06842, EY02162, EY018313; the Foundation Fighting Blindness; and RPB.


  1. Anukanth A, Khorana HG (1994) Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. J Biol Chem 269:19738–19744PubMedGoogle Scholar
  2. Berson EL, Grimsby JL, Adams SM et al (2001) Clinical features and mutations in patients with dominant retinitis pigmentosa-1 (RP1). Invest Ophthalmol Vis Sci 42:2217–2224PubMedGoogle Scholar
  3. Blais JD, Addison CL, Edge R et al (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532CrossRefPubMedGoogle Scholar
  4. Campochiaro PA (2007) Molecular targets for retinal vascular diseases. J Cell Physiol 210:575–581CrossRefPubMedGoogle Scholar
  5. Frederick JM, Krasnoperova NV, Hoffmann K et al (2001) Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 42:826–833PubMedGoogle Scholar
  6. Fukuda MN, Papermaster DS, Hargrave PA (1979) Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J Biol Chem 254:8201–8207PubMedGoogle Scholar
  7. Hargrave PA (2001) Rhodopsin structure, function, and topography the Friedenwald lecture. Invest Ophthalmol Vis Sci 42:3–9PubMedGoogle Scholar
  8. Karan G, Yang Z, Howes K et al (2005) Loss of ER retention and sequestration of the wild-type ELOVL4 by Stargardt disease dominant negative mutants. Mol Vis 11:657–664PubMedGoogle Scholar
  9. Karan G, Yang Z, Zhang K (2004) Expression of wild type and mutant ELOVL4 in cell culture: subcellular localization and cell viability. Mol Vis 10:248–253PubMedGoogle Scholar
  10. Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128CrossRefPubMedGoogle Scholar
  11. Kaushal S, Ridge KD, Khorana HG (1994) Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci USA 91:4024–4028CrossRefPubMedGoogle Scholar
  12. Krebs MP, Noorwez SM, Malhotra R et al (2004) Quality control of integral membrane proteins. Trends Biochem Sci 29:648–655CrossRefPubMedGoogle Scholar
  13. Liang CJ, Yamashita K, Muellenberg CG et al (1979) Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem 254:6414–6418PubMedGoogle Scholar
  14. Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949CrossRefPubMedGoogle Scholar
  15. Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425CrossRefPubMedGoogle Scholar
  16. Liu X, Garriga P, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc Natl Acad Sci USA 93:4554–4559CrossRefPubMedGoogle Scholar
  17. Marmorstein LY, Munier FL, Arsenijevic Y et al (2002) Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci USA 99:13067–13072CrossRefPubMedGoogle Scholar
  18. Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17:3043–3054CrossRefPubMedGoogle Scholar
  19. Noorwez SM, Kuksa V, Imanishi Y et al (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278:14442–14450CrossRefPubMedGoogle Scholar
  20. Noorwez SM, Malhotra R, McDowell JH et al (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279:16278–16284CrossRefPubMedGoogle Scholar
  21. Noorwez SM, Ostrov DA, McDowell JH et al (2008) A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin. Invest Ophthalmol Vis Sci 49:3224–3230CrossRefPubMedGoogle Scholar
  22. Oh CS, Toke DA, Mandala S et al (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384CrossRefPubMedGoogle Scholar
  23. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745CrossRefPubMedGoogle Scholar
  24. Roybal CN, Marmorstein LY, Vander Jagt DL et al (2005) Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Invest Ophthalmol Vis Sci 46:3973–3979CrossRefPubMedGoogle Scholar
  25. Ryoo HD, Domingos PM, Kang MJ et al (2007) Unfolded protein response in a Drosophila model for retinal degeneration. Embo J 26:242–252CrossRefPubMedGoogle Scholar
  26. Saliba RS, Munro PM, Luthert PJ et al (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918PubMedGoogle Scholar
  27. Sohocki MM, Daiger SP, Bowne SJ et al (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17:42–51CrossRefPubMedGoogle Scholar
  28. Stone EM, Lotery AJ, Munier FL et al (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202CrossRefPubMedGoogle Scholar
  29. Sung CH, Schneider BG, Agarwal N et al (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:8840–8844CrossRefPubMedGoogle Scholar
  30. Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47:3234–3241CrossRefPubMedGoogle Scholar
  31. Vasireddy V, Sharon M, Salem N Jr et al (2008) Role of ELOVL4 in fatty acid metabolism. Adv Exp Med Biol 613:283–290CrossRefPubMedGoogle Scholar
  32. Vasireddy V, Vijayasarathy C, Huang J et al (2005) Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol Vis 11:665–676PubMedGoogle Scholar
  33. Yang LP, Wu LM, Guo XJ et al (2007) Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48:5191–5198CrossRefPubMedGoogle Scholar
  34. Zhang K, Kniazeva M, Han M et al (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27:89–93PubMedGoogle Scholar
  35. Zhang XM, Yang Z, Karan G et al (2003) Elovl4 mRNA distribution in the developing mouse retina and phylogenetic conservation of Elovl4 genes. Mol Vis 9:301–307PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PathologyUniversity of California, San Diego, La JollaSan DiegoUSA
  2. 2.Departments of Anatomy and OphthalmologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations