Tubby-Like Protein 1 (Tulp1) Is Required for Normal Photoreceptor Synaptic Development

  • Gregory H. Grossman
  • Gayle J. T. Pauer
  • Umadevi Narendra
  • Stephanie A. Hagstrom
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)


Mutations in the photoreceptor-specific tubby-like protein 1 (TULP1) underlie a form of autosomal recessive retinitis pigmentosa in humans and photoreceptor degeneration in mice. In wild type (wt) mice, Tulp1 is localized to the photoreceptor inner segment, connecting cilium and synapse. To investigate the role of Tulp1 in the synapse, we examined the pre- and postsynaptic architecture in tulp1–/– mice. We used immunohistochemistry to examine tulp1–/– mice prior to retinal degeneration and made comparisons to wt littermates and rd10 mice. In the tulp1–/– synapse, the spatial relationship between the ribbon-associated proteins, Bassoon and Piccolo, are disrupted, and few intact ribbons are present. Furthermore, bipolar cell dendrites are stunted, most likely a direct consequence of the malformed photoreceptor synapses. Comparable abnormalities are not seen in rd10 mice. The association of early onset and severe photoreceptor degeneration, which is preceded by synaptic abnormalities, appears to represent a phenotype not previously described. Our new evidence indicates that Tulp1 is not only critical for photoreceptor function and survival, but is essential for the proper development of the photoreceptor synapse.


Retinitis Pigmentosa Bipolar Cell Retinal Degeneration Outer Plexiform Layer Photoreceptor Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Banerjee P, Kleyn PW, Knowles JA et al (1998) TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet 18(2):177–179CrossRefPubMedGoogle Scholar
  2. Boughman JA, Conneally PM, Nance WE (1980) Population genetic studies of retinitis pigmentosa. Am J Hum Genet 32(2):223–235PubMedGoogle Scholar
  3. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97(3):357–365PubMedGoogle Scholar
  4. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vision Res 42(4):517–525CrossRefPubMedGoogle Scholar
  5. Chang B, Hawes NL, Pardue MT et al (2007) Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vision Res 47(5):624–633CrossRefPubMedGoogle Scholar
  6. Dick O, Dieck S, Altrock WD et al (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37(5):775–786CrossRefPubMedGoogle Scholar
  7. Dick O, Hack I, Altrock WD, Garner CC, Gundelfinger ED, Brandstätter JH (2001) Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. J Comp Neurol 439(2):224–234CrossRefPubMedGoogle Scholar
  8. Gargini C, Terzibasi E, Mazzoni F, Strettoi E (2007) Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 500(2):222–238CrossRefPubMedGoogle Scholar
  9. Greferath U, Grünert U, Wässle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301(3):433–442CrossRefPubMedGoogle Scholar
  10. Gu S, Lennon A, Li Y et al (1998) Tubby-like protein-1 mutations in autosomal recessive retinitis pigmentosa. Lancet 351(9109):1103–1104CrossRefPubMedGoogle Scholar
  11. Hagstrom SA, Adamian M, Scimeca M, Pawlyk BS, Yue G, Li T (2001) A role for the Tubby-like protein 1 in rhodopsin transport. Invest Ophthalmol Vis Sci 42(9):1955–1962PubMedGoogle Scholar
  12. Hagstrom SA, Duyao M, North MA, Li T (1999) Retinal degeneration in tulp1–/– mice: vesicular accumulation in the interphotoreceptor matrix. Invest Ophthalmol Vis Sci 40(12):2795–2802PubMedGoogle Scholar
  13. Hagstrom SA, North MA, Nishina PM, Berson EL, Dryja TP (1998) Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nat Genet 18(2):174–176CrossRefPubMedGoogle Scholar
  14. Heidelberger R, Thoreson WB, Witkovsky P (2005) Synaptic transmission at retinal ribbon synapses. Prog Retin Eye Res 24(6):682–720CrossRefPubMedGoogle Scholar
  15. Ikeda S, Shiva N, Ikeda A et al (2000) Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum Mol Genet 9(2):155–163CrossRefPubMedGoogle Scholar
  16. Léveillard T, Mohand-Saïd S, Lorentz O et al (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36(7):755–759CrossRefPubMedGoogle Scholar
  17. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22(5):607–655CrossRefPubMedGoogle Scholar
  18. McNiven MA, Cao H, Pitts KR, Yoon Y (2000) The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci 25(3):115–120CrossRefPubMedGoogle Scholar
  19. Morgans CW (2000) Presynaptic proteins of ribbon synapses in the retina. Microsc Res Tech 50(2):141–150CrossRefPubMedGoogle Scholar
  20. Paloma E, Hjelmqvist L, Bayés M et al (2000) Novel mutations in the TULP1 gene causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(3):656–659PubMedGoogle Scholar
  21. Schmitz F, Königstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28(3):857–872CrossRefPubMedGoogle Scholar
  22. tom Dieck S, Altrock WD, Kessels MM et al (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168(5):825–836CrossRefPubMedGoogle Scholar
  23. tom Dieck S, Brandstätter JH (2006) Ribbon synapses of the retina. Cell Tissue Res 326(2):339–346CrossRefPubMedGoogle Scholar
  24. van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell Biol 9(3):96–102CrossRefPubMedGoogle Scholar
  25. Xi Q, Pauer GJ, Ball SL et al (2007) Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci 48(6):2837–2844CrossRefPubMedGoogle Scholar
  26. Xi Q, Pauer GJ, Marmorstein AD, Crabb JW, Hagstrom SA (2005) Tubby-like protein 1 (TULP1) interacts with F-actin in photoreceptor cells. Invest Ophthalmol Vis Sci 46(12):4754–4761CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Gregory H. Grossman
    • 1
  • Gayle J. T. Pauer
    • 1
    • 2
  • Umadevi Narendra
    • 1
    • 2
  • Stephanie A. Hagstrom
    • 3
    • 4
  1. 1.Department of Ophthalmic ResearchCole Eye Institute, Cleveland ClinicClevelandUSA
  2. 2.Lerner Research InstituteClevelandUSA
  3. 3.Department of Ophthalmic ResearchCole Eye Institute, Cleveland ClinicClevelandUSA
  4. 4.Department of OphthalmologyCleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandUSA

Personalised recommendations