Direct-Writing of Biomedia for Drug Delivery and Tissue Regeneration

  • Salil Desai
  • Benjamin Harrison
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


This chapter presents direct-write methods for precisely depositing biomedia for drug delivery and tissue engineering applications. Specifically, different inkjet methods, their operational modes and drop generation dynamics are detailed. Some of the unique challenges for inkjetting biopolymers and the control of their rheological properties are highlighted. The manufacturing of drug delivery microcapsules with controlled release kinetics based on variations in inkjetting and fluid properties is discussed. Finally, the inkjetting of biomedia including stem cells and growth factors into a complex 3D construct for tissue regeneration is elaborated.


Sodium Alginate Inkjet Printing Tissue Engineering Scaffold Calcium Chloride Solution Solid Freeform Fabrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McAllister DV et al (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313CrossRefGoogle Scholar
  2. 2.
    Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976CrossRefGoogle Scholar
  3. 3.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492CrossRefGoogle Scholar
  4. 4.
    Bredt JF, Sach E, Brancazio D, Cima M, Curodeau A, Fan T (1998) Three dimensional printing system. US Patent 5807437Google Scholar
  5. 5.
    Geng L, Feng W, Hutmacher DW, Wong YS, Loh HT, Fuh JYH (2005) Direct writing of chitosan scaffolds using a robotic system”. Rapid Prototyping J 11(2):90–97CrossRefGoogle Scholar
  6. 6.
    McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103(31):11461–11466CrossRefGoogle Scholar
  7. 7.
    Sengupta S et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572CrossRefGoogle Scholar
  8. 8.
    Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 29:3936–3943CrossRefGoogle Scholar
  9. 9.
    Langer R (1998) Drug delivery and targeting. Nature 392:5–10Google Scholar
  10. 10.
    Jacobson JM, Hubert BN, Ridley B, Nivi B, Fuller S. Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same. United States Patent: 6,294,401, September 25, 2001.Google Scholar
  11. 11.
    Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Transactions on Electronics Packaging Manufacturing 25(1):26–33CrossRefGoogle Scholar
  12. 12.
    Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science Magazine 265:1684–1686Google Scholar
  13. 13.
    Ridley BA, Nivi B, Jacobson JM (1999) All Organic Field Effect Transistors Fabricated by Printing. Science Magazine 286:746–748Google Scholar
  14. 14.
    Shah VG, Hayes DJ (2002) Fabrication of passive elements using ink-jet technology. IMAPS ATW on Passive Integration, MicroFab Technologies, Inc.Google Scholar
  15. 15.
    Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications in drug discovery. Curr Opin Biotechnol 9(6):615–617CrossRefGoogle Scholar
  16. 16.
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917CrossRefGoogle Scholar
  17. 17.
    Leslie M (2006) Sprayed-on growth factors guide stem cells. Science 314(5807):1865Google Scholar
  18. 18.
    Alper J (2004) Biology and the inkjets. Science 305(5692):1895CrossRefGoogle Scholar
  19. 19.
    Lausted CG, Warren CB, Hood LE, Lasky SR (2006) Printing your own inkjet microarrays. Methods Enzymol 410:168–189CrossRefGoogle Scholar
  20. 20.
    Le HP (1999) Progress and trends in ink-jet printing technology, Recent progresses in inkjet technologies II, The Society for Imaging Science and Technology. 1–14.Google Scholar
  21. 21.
    Rayleigh FRS (1878) On the instability of Jets. Proc Lond Math Soc 10(4):4–13CrossRefGoogle Scholar
  22. 22.
    Yatsuzuka K, Saito K, Asano K, Aero-dynamical motion of charged droplets ejected from the 26 μm Nozzle. IEEE Industry Applications Society Annual Meeting, New Orleans, October 1997, pp. 1845–1850Google Scholar
  23. 23.
    Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices Volume 28. IBM J Res Dev 28:314–321CrossRefGoogle Scholar
  24. 24.
    Roth EA, XuT DM, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715CrossRefGoogle Scholar
  25. 25.
    Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000) Protein microdeposition using a conventional ink-jet printer. Biotechniques 28(3):492–496Google Scholar
  26. 26.
    Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18(4):438–441CrossRefGoogle Scholar
  27. 27.
    Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11/12):1658–1666CrossRefGoogle Scholar
  28. 28.
    de Gans B-J, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213CrossRefGoogle Scholar
  29. 29.
    Khalil SED (2005) Deposition and Structural Formation of 3D Alginate Tissue Scaffolds. Drexel University, Philadelphia, Ph.D. DissertationGoogle Scholar
  30. 30.
    Richards Grayson AC et al (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2(11):767–772CrossRefGoogle Scholar
  31. 31.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  32. 32.
    Dong Y (2007) In vitro and in vivo evaluation of methoxy polyethylene glycol–polylactide (MPEG–PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 28:4154–4160CrossRefGoogle Scholar
  33. 33.
    Murtas S, Capuani G, Dentini M, Manetti C, Masci G, Massimi M et al (2005) Alginate beads as immobilization matrix for hepatocytes perfused in a bioreactor: a physico-chemical characterization. J Biomater Sci Polym Ed 16(7):829–846CrossRefGoogle Scholar
  34. 34.
    Sutton C (2005) The obstetrician and gynaecologist 7:168e76Google Scholar
  35. 35.
    Giunchedi P, Gavini E, Moretti MDL, Pirisino G (2000) Evaluation of alginate compressed matrices as prolonged drug delivery systems. AAPS Pharm Sci Tech 1:31–36CrossRefGoogle Scholar
  36. 36.
    Clark AH, Ross-Murphy SB (1987) Adv Polym Sci 83:57CrossRefGoogle Scholar
  37. 37.
    Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285CrossRefGoogle Scholar
  38. 38.
    Ciofani G, Raffa V, Menciassi M, Dario P (2008) Alginate and chitosan particles as drug delivery system for cell therapy. Biomed Microdevices 10:131–140CrossRefGoogle Scholar
  39. 39.
    Douglas KL, Tabrizian M (2005) Effect of experimental parameters on the formation of alginate–chitosan nanoparticles and evaluation of their potential application as DNA carrier. J Biomater Sci Polym Ed 16(1):43–56CrossRefGoogle Scholar
  40. 40.
    Moore A (2006) Understanding microdrop fluid generation of a biopolymer system for biomedical applications. Masters Thesis, Department of Industrial and Systems Engineering, NC A&T SU, Oct 2006Google Scholar
  41. 41.
    Wang MS, Childs RF, Chang PL (2005) A novel method to enhance the stability of alginate-poly-l-lysine-alginate microcapsules. J Biomater Sci Polym Ed 16(1):89–111CrossRefGoogle Scholar
  42. 42.
    Kaihara S, Vacanti JP (1999) Tissue engineering: toward new solutions for transplantation and reconstructive surgery. Arch Surg 134:1184CrossRefGoogle Scholar
  43. 43.
    Griffith LG, Naughton G (2002) Tissue engineering: current challenges and expanding opportunities. Science 295:1009CrossRefGoogle Scholar
  44. 44.
    Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: A 21st century solution to surgical reconstruction. Ann Thorac Surg 72:577CrossRefGoogle Scholar
  45. 45.
    Shalak R, Fox CF (1988) Preface. In: Tissue Engineering. Alan R. Liss (eds), New York. pp 26–29Google Scholar
  46. 46.
    Langer R, Vacanti JP (1993) Tissue Engineering. Science. American Assocation for the advancement of Science (AAAS)260(5110):920–926CrossRefGoogle Scholar
  47. 47.
    Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ et al (1996) Use of dermagraft, a cultured human dermis, to treat diabetic root ulcers. Diabetes Care 19:350–354CrossRefGoogle Scholar
  48. 48.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895CrossRefGoogle Scholar
  49. 49.
    Caldamone AA, Diamond DA (2001) Long-term results of the endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes. J Urol 165:2224–2227CrossRefGoogle Scholar
  50. 50.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246CrossRefGoogle Scholar
  51. 51.
    Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17:149–155CrossRefGoogle Scholar
  52. 52.
    Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040CrossRefGoogle Scholar
  53. 53.
    Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129:1330–1338CrossRefGoogle Scholar
  54. 54.
    Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T (2003) Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24:2303–2308CrossRefGoogle Scholar
  55. 55.
    Gartner L, Hiatt J (1997) Color textbook of histology, 2nd edn. W. B. Saunders, Philadelphia, PA, p 11Google Scholar
  56. 56.
    Sun W, Darling A, Starly B, Nam J (2003) Computer aided tissue engineering Part I: Overview, scope and challenges. Biotechnol Appl Biochem 39 9pt 1: 29–47Google Scholar
  57. 57.
    Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–40Google Scholar
  58. 58.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R (1994) Preparation and characterisation of poly(L-lactic acid) foams. Polymer 35:1068–1077CrossRefGoogle Scholar
  59. 59.
    Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D, L-lactic co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422CrossRefGoogle Scholar
  60. 60.
    Cima LG, Vacanti JP, Vacanti C, Inger D, Mooney D, Langer R (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng-T ASME 113:143–151CrossRefGoogle Scholar
  61. 61.
    Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1:15–28CrossRefGoogle Scholar
  62. 62.
    Thompson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineering trabecular bone. J Biomater Sci-Polym E 7:23–38CrossRefGoogle Scholar
  63. 63.
    Whang K, Thomas CK, Nuber G, Healy KE (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837CrossRefGoogle Scholar
  64. 64.
    Reed AM, Gilding DK (1981) Biodegradable polymer for use in surgery –poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22:342–346CrossRefGoogle Scholar
  65. 65.
    Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 36:1–8CrossRefGoogle Scholar
  66. 66.
    Freed LE, Vunjak-Novakovic G (1998) Culture of organized cell communities. Adv Drug Deliver Rev 33:15–30CrossRefGoogle Scholar
  67. 67.
    Martin I, Padera RF, Vunjak-Novakovic G, Freed LE (1998) In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J Orthopaed Res 16:181–189CrossRefGoogle Scholar
  68. 68.
    Vander AJ, Sherman JH, Luciano DS (1985) Human Physiology. McGraw-Hill, New York, pp 341–366Google Scholar
  69. 69.
    Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin Ther 19:894–905CrossRefGoogle Scholar
  70. 70.
    Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomat Sci-Polym E 12:107–124CrossRefGoogle Scholar
  71. 71.
    Yaakov Nahmias, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnology and Bioengineering. 92, No. 2.Google Scholar
  72. 72.
    Chrisey DB (2000) The power of direct writing. Science 289(5481):879–881CrossRefGoogle Scholar
  73. 73.
    Nahmias YK, Gao BZ, Odde DJ (2004) Dimensionless parameters for the design of optical traps and laser guidance systems. Appl Opt 43(20):3999–4006CrossRefGoogle Scholar
  74. 74.
    Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389CrossRefGoogle Scholar
  75. 75.
    Narasimhan SV, Goodwin RL, Borg RL, Dawson TK et al (2004) Multiple beam laser cell micropatterning system. Proc. SPIE 5514:437–446CrossRefGoogle Scholar
  76. 76.
    Wright WH, Sonek GJ, Tadir Y, Berns MW (1990) Laser trapping in cell biology. IEEE J Quantum Elect 26:2148–2157CrossRefGoogle Scholar
  77. 77.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefGoogle Scholar
  78. 78.
    Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67:312–318CrossRefGoogle Scholar
  79. 79.
    Ashkin A (2000) History of optical trapping and manipulation of small neutral particle, atoms, and molecules. IEEE J Sel Top Quant 6:841–856CrossRefGoogle Scholar
  80. 80.
    Pirlo RK, Delphine MD, Knapp DR, Gao BZ (2006) Cell deposition system based on laser guidance. Biotechnol J 1:1007–1013CrossRefGoogle Scholar
  81. 81.
    Smay JE et al (2002) Langmuir 18(14):5429CrossRefGoogle Scholar
  82. 82.
    Smay JE et al (2002) Adv Mater 14(18):1279CrossRefGoogle Scholar
  83. 83.
    Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Materials Today 7:32–39CrossRefGoogle Scholar
  84. 84.
    Li Q, Lewis JA (2003) Adv Mater 15(19):1639CrossRefGoogle Scholar
  85. 85.
    Chu TMG et al (2001) J Mater Sci: Mater Med 12(6):471CrossRefGoogle Scholar
  86. 86.
    Dhariwala B, Hunt E, Boland T (2004) Tissue Eng 10:1316Google Scholar
  87. 87.
    Leong KF, Cheah CM, Chua CK (2003) Biomaterials 24:2363CrossRefGoogle Scholar
  88. 88.
    Landers R, Pfister A, Huebner U, John H, Schmelzeisen R, Muelhaupt R (2002) J Mater Sci 37:3107CrossRefGoogle Scholar
  89. 89.
    Xie B, Parkhill RL, Warren WL, Smay JE (2006) Direct writing of three-dimensional polymer scaffolds using colloidal gels. Adv Funct Mater 16:1685–1693CrossRefGoogle Scholar
  90. 90.
    Janes KA, Alonso MJ (2003) J Appl Polym Sci 88:2769CrossRefGoogle Scholar
  91. 91.
    Chan AT, Lewis JA (2005) Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures. Langmuir 21:8576–8579CrossRefGoogle Scholar
  92. 92.
    Rhodes SK, Lewis JA (2006) Phase behavior, 3-D structure, and rheology of colloidal microsphere-nanoparticle suspensions. J Am Ceram Soc 89:1840–1846CrossRefGoogle Scholar
  93. 93.
    A Mohraz ER, Weeks JA Lewis (2008) Structure and dynamics of biphasics colloidal mixtures. Physical Review E 77, 060403(R)Google Scholar
  94. 94.
    George MC, Mohraz A, Piech M, Bell NS, Lewis JA, Braun PV (2008) Direct laser patterning of photoresponsive colloids for microscale patterning of 3D porous structures. Adv Mater 20:1–5CrossRefGoogle Scholar
  95. 95.
    Lee W, Chan A, Lewis JA, Braun PV (2004) Nanoparticle-mediated epitaxial assembly of colloidal microspheres on patterned substrates. Langmuir 20:5262–5270CrossRefGoogle Scholar
  96. 96.
    Therriault D, White S, Lewis JA (2007) Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol 17; 10112-1–10112-8Google Scholar
  97. 97.
    Gratson G, Lewis JA (2005) Polyelectrolyte inks for direct-write assembly of 3-D micro-periodic scaffolds. Langmuir 21:457–464CrossRefGoogle Scholar
  98. 98.
    Roth EAXuT, Das M, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715CrossRefGoogle Scholar
  99. 99.
    Sanjana NE, Fuller SB (2004) A fast flexible ink-ket printing method for patterning dissociated neurons in culture. J Neurosci Meth 136(2):151–163CrossRefGoogle Scholar
  100. 100.
    Watanable K, Miyazaki T, Matsuda R (2003) Growth factor array fabrication using a color ink jet printer. Zool Sci 20(4):429–434CrossRefGoogle Scholar
  101. 101.
    Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85(1):29–33CrossRefGoogle Scholar
  102. 102.
    Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99CrossRefGoogle Scholar
  103. 103.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161CrossRefGoogle Scholar
  104. 104.
    Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10(24):3129–3140CrossRefGoogle Scholar
  105. 105.
    Hermanson O, Jepsen K, Rosenfeld MG (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419(6910):934–939CrossRefGoogle Scholar
  106. 106.
    Teixeira AI, Duckworth JK, Hermanson O (2007) Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 17(1):56–61CrossRefGoogle Scholar
  107. 107.
    Perkins J (2008) Characterization of absorbance and time release kinetics of calcium alginate microcapsules using drop-on-demand inkjet printing technology” Masters Thesis, Department of Industrial & Systems Engineering, NC A&T SU, Dec 2008Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Salil Desai
    • 1
  • Benjamin Harrison
    • 2
  1. 1.North Carolina A&T State UniversityGreensboroUSA
  2. 2.Wake Forest Institute for Regenerative MedicineWinston-SalemUSA

Personalised recommendations