Skip to main content

Direct-Writing of Biomedia for Drug Delivery and Tissue Regeneration

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter presents direct-write methods for precisely depositing biomedia for drug delivery and tissue engineering applications. Specifically, different inkjet methods, their operational modes and drop generation dynamics are detailed. Some of the unique challenges for inkjetting biopolymers and the control of their rheological properties are highlighted. The manufacturing of drug delivery microcapsules with controlled release kinetics based on variations in inkjetting and fluid properties is discussed. Finally, the inkjetting of biomedia including stem cells and growth factors into a complex 3D construct for tissue regeneration is elaborated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McAllister DV et al (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313

    Article  CAS  Google Scholar 

  2. Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  Google Scholar 

  3. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  Google Scholar 

  4. Bredt JF, Sach E, Brancazio D, Cima M, Curodeau A, Fan T (1998) Three dimensional printing system. US Patent 5807437

    Google Scholar 

  5. Geng L, Feng W, Hutmacher DW, Wong YS, Loh HT, Fuh JYH (2005) Direct writing of chitosan scaffolds using a robotic system”. Rapid Prototyping J 11(2):90–97

    Article  Google Scholar 

  6. McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA 103(31):11461–11466

    Article  CAS  Google Scholar 

  7. Sengupta S et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    Article  CAS  Google Scholar 

  8. Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 29:3936–3943

    Article  CAS  Google Scholar 

  9. Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    CAS  Google Scholar 

  10. Jacobson JM, Hubert BN, Ridley B, Nivi B, Fuller S. Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same. United States Patent: 6,294,401, September 25, 2001.

    Google Scholar 

  11. Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Transactions on Electronics Packaging Manufacturing 25(1):26–33

    Article  CAS  Google Scholar 

  12. Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science Magazine 265:1684–1686

    CAS  Google Scholar 

  13. Ridley BA, Nivi B, Jacobson JM (1999) All Organic Field Effect Transistors Fabricated by Printing. Science Magazine 286:746–748

    CAS  Google Scholar 

  14. Shah VG, Hayes DJ (2002) Fabrication of passive elements using ink-jet technology. IMAPS ATW on Passive Integration, MicroFab Technologies, Inc.

    Google Scholar 

  15. Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications in drug discovery. Curr Opin Biotechnol 9(6):615–617

    Article  CAS  Google Scholar 

  16. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  CAS  Google Scholar 

  17. Leslie M (2006) Sprayed-on growth factors guide stem cells. Science 314(5807):1865

    Google Scholar 

  18. Alper J (2004) Biology and the inkjets. Science 305(5692):1895

    Article  CAS  Google Scholar 

  19. Lausted CG, Warren CB, Hood LE, Lasky SR (2006) Printing your own inkjet microarrays. Methods Enzymol 410:168–189

    Article  CAS  Google Scholar 

  20. Le HP (1999) Progress and trends in ink-jet printing technology, Recent progresses in inkjet technologies II, The Society for Imaging Science and Technology. 1–14.

    Google Scholar 

  21. Rayleigh FRS (1878) On the instability of Jets. Proc Lond Math Soc 10(4):4–13

    Article  Google Scholar 

  22. Yatsuzuka K, Saito K, Asano K, Aero-dynamical motion of charged droplets ejected from the 26 μm Nozzle. IEEE Industry Applications Society Annual Meeting, New Orleans, October 1997, pp. 1845–1850

    Google Scholar 

  23. Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices Volume 28. IBM J Res Dev 28:314–321

    Article  Google Scholar 

  24. Roth EA, XuT DM, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715

    Article  CAS  Google Scholar 

  25. Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000) Protein microdeposition using a conventional ink-jet printer. Biotechniques 28(3):492–496

    CAS  Google Scholar 

  26. Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18(4):438–441

    Article  CAS  Google Scholar 

  27. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11/12):1658–1666

    Article  CAS  Google Scholar 

  28. de Gans B-J, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  CAS  Google Scholar 

  29. Khalil SED (2005) Deposition and Structural Formation of 3D Alginate Tissue Scaffolds. Drexel University, Philadelphia, Ph.D. Dissertation

    Google Scholar 

  30. Richards Grayson AC et al (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2(11):767–772

    Article  Google Scholar 

  31. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  32. Dong Y (2007) In vitro and in vivo evaluation of methoxy polyethylene glycol–polylactide (MPEG–PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 28:4154–4160

    Article  CAS  Google Scholar 

  33. Murtas S, Capuani G, Dentini M, Manetti C, Masci G, Massimi M et al (2005) Alginate beads as immobilization matrix for hepatocytes perfused in a bioreactor: a physico-chemical characterization. J Biomater Sci Polym Ed 16(7):829–846

    Article  CAS  Google Scholar 

  34. Sutton C (2005) The obstetrician and gynaecologist 7:168e76

    Google Scholar 

  35. Giunchedi P, Gavini E, Moretti MDL, Pirisino G (2000) Evaluation of alginate compressed matrices as prolonged drug delivery systems. AAPS Pharm Sci Tech 1:31–36

    Article  Google Scholar 

  36. Clark AH, Ross-Murphy SB (1987) Adv Polym Sci 83:57

    Article  CAS  Google Scholar 

  37. Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  CAS  Google Scholar 

  38. Ciofani G, Raffa V, Menciassi M, Dario P (2008) Alginate and chitosan particles as drug delivery system for cell therapy. Biomed Microdevices 10:131–140

    Article  CAS  Google Scholar 

  39. Douglas KL, Tabrizian M (2005) Effect of experimental parameters on the formation of alginate–chitosan nanoparticles and evaluation of their potential application as DNA carrier. J Biomater Sci Polym Ed 16(1):43–56

    Article  CAS  Google Scholar 

  40. Moore A (2006) Understanding microdrop fluid generation of a biopolymer system for biomedical applications. Masters Thesis, Department of Industrial and Systems Engineering, NC A&T SU, Oct 2006

    Google Scholar 

  41. Wang MS, Childs RF, Chang PL (2005) A novel method to enhance the stability of alginate-poly-l-lysine-alginate microcapsules. J Biomater Sci Polym Ed 16(1):89–111

    Article  Google Scholar 

  42. Kaihara S, Vacanti JP (1999) Tissue engineering: toward new solutions for transplantation and reconstructive surgery. Arch Surg 134:1184

    Article  CAS  Google Scholar 

  43. Griffith LG, Naughton G (2002) Tissue engineering: current challenges and expanding opportunities. Science 295:1009

    Article  CAS  Google Scholar 

  44. Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: A 21st century solution to surgical reconstruction. Ann Thorac Surg 72:577

    Article  CAS  Google Scholar 

  45. Shalak R, Fox CF (1988) Preface. In: Tissue Engineering. Alan R. Liss (eds), New York. pp 26–29

    Google Scholar 

  46. Langer R, Vacanti JP (1993) Tissue Engineering. Science. American Assocation for the advancement of Science (AAAS)260(5110):920–926

    Article  CAS  Google Scholar 

  47. Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ et al (1996) Use of dermagraft, a cultured human dermis, to treat diabetic root ulcers. Diabetes Care 19:350–354

    Article  CAS  Google Scholar 

  48. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  Google Scholar 

  49. Caldamone AA, Diamond DA (2001) Long-term results of the endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes. J Urol 165:2224–2227

    Article  CAS  Google Scholar 

  50. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  Google Scholar 

  51. Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17:149–155

    Article  CAS  Google Scholar 

  52. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040

    Article  CAS  Google Scholar 

  53. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129:1330–1338

    Article  Google Scholar 

  54. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T (2003) Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24:2303–2308

    Article  CAS  Google Scholar 

  55. Gartner L, Hiatt J (1997) Color textbook of histology, 2nd edn. W. B. Saunders, Philadelphia, PA, p 11

    Google Scholar 

  56. Sun W, Darling A, Starly B, Nam J (2003) Computer aided tissue engineering Part I: Overview, scope and challenges. Biotechnol Appl Biochem 39 9pt 1: 29–47

    Google Scholar 

  57. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–40

    CAS  Google Scholar 

  58. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R (1994) Preparation and characterisation of poly(L-lactic acid) foams. Polymer 35:1068–1077

    Article  CAS  Google Scholar 

  59. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D, L-lactic co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422

    Article  CAS  Google Scholar 

  60. Cima LG, Vacanti JP, Vacanti C, Inger D, Mooney D, Langer R (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng-T ASME 113:143–151

    Article  CAS  Google Scholar 

  61. Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1:15–28

    Article  CAS  Google Scholar 

  62. Thompson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineering trabecular bone. J Biomater Sci-Polym E 7:23–38

    Article  Google Scholar 

  63. Whang K, Thomas CK, Nuber G, Healy KE (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837

    Article  CAS  Google Scholar 

  64. Reed AM, Gilding DK (1981) Biodegradable polymer for use in surgery –poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22:342–346

    Article  Google Scholar 

  65. Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 36:1–8

    Article  CAS  Google Scholar 

  66. Freed LE, Vunjak-Novakovic G (1998) Culture of organized cell communities. Adv Drug Deliver Rev 33:15–30

    Article  CAS  Google Scholar 

  67. Martin I, Padera RF, Vunjak-Novakovic G, Freed LE (1998) In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J Orthopaed Res 16:181–189

    Article  CAS  Google Scholar 

  68. Vander AJ, Sherman JH, Luciano DS (1985) Human Physiology. McGraw-Hill, New York, pp 341–366

    Google Scholar 

  69. Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin Ther 19:894–905

    Article  CAS  Google Scholar 

  70. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomat Sci-Polym E 12:107–124

    Article  CAS  Google Scholar 

  71. Yaakov Nahmias, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnology and Bioengineering. 92, No. 2.

    Google Scholar 

  72. Chrisey DB (2000) The power of direct writing. Science 289(5481):879–881

    Article  CAS  Google Scholar 

  73. Nahmias YK, Gao BZ, Odde DJ (2004) Dimensionless parameters for the design of optical traps and laser guidance systems. Appl Opt 43(20):3999–4006

    Article  Google Scholar 

  74. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–389

    Article  CAS  Google Scholar 

  75. Narasimhan SV, Goodwin RL, Borg RL, Dawson TK et al (2004) Multiple beam laser cell micropatterning system. Proc. SPIE 5514:437–446

    Article  Google Scholar 

  76. Wright WH, Sonek GJ, Tadir Y, Berns MW (1990) Laser trapping in cell biology. IEEE J Quantum Elect 26:2148–2157

    Article  CAS  Google Scholar 

  77. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  78. Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67:312–318

    Article  CAS  Google Scholar 

  79. Ashkin A (2000) History of optical trapping and manipulation of small neutral particle, atoms, and molecules. IEEE J Sel Top Quant 6:841–856

    Article  CAS  Google Scholar 

  80. Pirlo RK, Delphine MD, Knapp DR, Gao BZ (2006) Cell deposition system based on laser guidance. Biotechnol J 1:1007–1013

    Article  CAS  Google Scholar 

  81. Smay JE et al (2002) Langmuir 18(14):5429

    Article  CAS  Google Scholar 

  82. Smay JE et al (2002) Adv Mater 14(18):1279

    Article  CAS  Google Scholar 

  83. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Materials Today 7:32–39

    Article  CAS  Google Scholar 

  84. Li Q, Lewis JA (2003) Adv Mater 15(19):1639

    Article  CAS  Google Scholar 

  85. Chu TMG et al (2001) J Mater Sci: Mater Med 12(6):471

    Article  CAS  Google Scholar 

  86. Dhariwala B, Hunt E, Boland T (2004) Tissue Eng 10:1316

    CAS  Google Scholar 

  87. Leong KF, Cheah CM, Chua CK (2003) Biomaterials 24:2363

    Article  CAS  Google Scholar 

  88. Landers R, Pfister A, Huebner U, John H, Schmelzeisen R, Muelhaupt R (2002) J Mater Sci 37:3107

    Article  CAS  Google Scholar 

  89. Xie B, Parkhill RL, Warren WL, Smay JE (2006) Direct writing of three-dimensional polymer scaffolds using colloidal gels. Adv Funct Mater 16:1685–1693

    Article  CAS  Google Scholar 

  90. Janes KA, Alonso MJ (2003) J Appl Polym Sci 88:2769

    Article  CAS  Google Scholar 

  91. Chan AT, Lewis JA (2005) Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures. Langmuir 21:8576–8579

    Article  CAS  Google Scholar 

  92. Rhodes SK, Lewis JA (2006) Phase behavior, 3-D structure, and rheology of colloidal microsphere-nanoparticle suspensions. J Am Ceram Soc 89:1840–1846

    Article  CAS  Google Scholar 

  93. A Mohraz ER, Weeks JA Lewis (2008) Structure and dynamics of biphasics colloidal mixtures. Physical Review E 77, 060403(R)

    Google Scholar 

  94. George MC, Mohraz A, Piech M, Bell NS, Lewis JA, Braun PV (2008) Direct laser patterning of photoresponsive colloids for microscale patterning of 3D porous structures. Adv Mater 20:1–5

    Article  Google Scholar 

  95. Lee W, Chan A, Lewis JA, Braun PV (2004) Nanoparticle-mediated epitaxial assembly of colloidal microspheres on patterned substrates. Langmuir 20:5262–5270

    Article  CAS  Google Scholar 

  96. Therriault D, White S, Lewis JA (2007) Rheological behavior of fugitive organic inks for direct-write assembly. Appl Rheol 17; 10112-1–10112-8

    Google Scholar 

  97. Gratson G, Lewis JA (2005) Polyelectrolyte inks for direct-write assembly of 3-D micro-periodic scaffolds. Langmuir 21:457–464

    Article  CAS  Google Scholar 

  98. Roth EAXuT, Das M, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715

    Article  CAS  Google Scholar 

  99. Sanjana NE, Fuller SB (2004) A fast flexible ink-ket printing method for patterning dissociated neurons in culture. J Neurosci Meth 136(2):151–163

    Article  Google Scholar 

  100. Watanable K, Miyazaki T, Matsuda R (2003) Growth factor array fabrication using a color ink jet printer. Zool Sci 20(4):429–434

    Article  Google Scholar 

  101. Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ et al (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85(1):29–33

    Article  CAS  Google Scholar 

  102. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99

    Article  CAS  Google Scholar 

  103. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  CAS  Google Scholar 

  104. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10(24):3129–3140

    Article  CAS  Google Scholar 

  105. Hermanson O, Jepsen K, Rosenfeld MG (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419(6910):934–939

    Article  CAS  Google Scholar 

  106. Teixeira AI, Duckworth JK, Hermanson O (2007) Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 17(1):56–61

    Article  CAS  Google Scholar 

  107. Perkins J (2008) Characterization of absorbance and time release kinetics of calcium alginate microcapsules using drop-on-demand inkjet printing technology” Masters Thesis, Department of Industrial & Systems Engineering, NC A&T SU, Dec 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Desai, S., Harrison, B. (2010). Direct-Writing of Biomedia for Drug Delivery and Tissue Regeneration. In: Narayan, R., Boland, T., Lee, YS. (eds) Printed Biomaterials. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1395-1_5

Download citation

Publish with us

Policies and ethics