Skip to main content

Hybrid-ARQ Schemes for Reliable and Secret Wireless Communications

  • Chapter
  • First Online:
Securing Wireless Communications at the Physical Layer

Abstract

Hybrid automatic retransmission request (HARQ) schemes are revisited for a block fading wire-tap channel. Here, two legitimate users communicate over a block-fading channel in the presence of a passive eavesdropper who intercepts the transmissions through an independent block-fading channel. In this model, the transmitter obtains a 1-bit ACK/NACK feedback from the legitimate receiver via an error-free public channel. Both reliability and confidentiality of secure HARQ protocols are studied by joint consideration of channel coding, secrecy coding, and retransmission protocols. In particular, the error and secrecy performance of repetition time diversity (RTD) and incremental redundancy (INR) protocols are investigated based on Wyner code sequences. These protocols ensure that the confidential message is decoded successfully by the legitimate receiver and is kept completely secret from the eavesdropper for a set of channel realizations. It is illustrated that there exists a family of rate-compatible Wyner codes which ensure a secure INR protocol. Next, it also defines the connection outage and the secrecy outage probabilities that characterize the tradeoff between the reliability of the legitimate communication link and the confidentiality with respect to the eavesdropper's link, respectively. For a given connection/secrecy outage probability pair, an achievable throughput of secure HARQ protocols is derived for a block-fading channel. Finally, both asymptotic analysis and numerical calculations demonstrate the benefits of HARQ protocols to throughput and secrecy.

Portions of the material have appeared previously in “On the Throughput of Secure Hybrid-ARQ Protocols for Gaussian Block-Fading Channels”, IEEE Transactions on Information Theory, vol. 55, no. 4, 2009 © IEEE 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. G. Caire and D. Tuninetti, “The throughput of hybrid-ARQ protocols for the Gaussian collision channel,” IEEE Trans. Inf. Theory, vol. 47, no. 5, pp. 1971–1988, Jul. 2001.

    Article  MATH  MathSciNet  Google Scholar 

  2. 2. J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389–400, Apr. 1988.

    Article  Google Scholar 

  3. 3. K. R. Narayanan and G. L. Stuber, “A novel ARQ technique using the turbo coding principle,” IEEE Commun. Lett., vol. 1, no. 2, pp. 49–51, Mar. 1997.

    Article  Google Scholar 

  4. 4. D. Tuninetti and G. Caire, “The throughput of some wireless multiaccess systems,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 2773–2785, Oct. 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. E. Soljanin, R. Liu, and P. Spasojevi´c, “Hybrid ARQ with random transmission assignments,” in Advances in Network Information Theory, ser. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, P. Gupta, G. Kramer, and A. J. van Wijngaarden, Eds. Providence, RI: American Mathematical Society, 2004, pp. 321–334.

    Google Scholar 

  6. 6. S. Sesia, G. Caire, and G. Vivier, “Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes,” IEEE Trans. Commun., vol. 52, no. 8, pp. 1311–1321, Aug. 2004.

    Article  Google Scholar 

  7. 7. C. F. Leanderson and G. Caire, “The performance of incremental redundancy schemes based on convolutional codes in the block-fading Gaussian collision channel,” IEEE Trans. Wireless Commun., vol. 3, no. 3, pp. 843–854, May 2004.

    Article  Google Scholar 

  8. E. Soljanin, N. Varnica, and P. Whiting, “Incremental redundancy hybrid ARQ with LDPC and raptor code,” IEEE Trans. Inf. Theory, submitted, Sept. 2005.

    Google Scholar 

  9. 9. A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–138, Oct. 1975.

    MathSciNet  Google Scholar 

  10. 10. I. Csisz´ar and J. K¨orner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.

    Article  MathSciNet  Google Scholar 

  11. 11. S. K. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, July. 1978.

    Article  MATH  MathSciNet  Google Scholar 

  12. 12. Y. Liang and H. V. Poor, “Multiple access channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 976–1002, Mar. 2008.

    Article  MathSciNet  Google Scholar 

  13. R. Liu, I. Maric, R. D. Yates, and P. Spasojevic, “The discrete memoryless multiple access channel with confidential messages,” in Proc. IEEE Int. Symp. Information Theory, Seattle, WA, July 2006 pp. 957–961.

    Google Scholar 

  14. E. Tekin and A. Yener, “The Gaussian multiple access wire-tap channel with collective secrecy constraints,” in Proc. IEEE Int. Symp. Information Theory, Seattle,WA, July 2006 pp. 1164–1168.

    Google Scholar 

  15. 15. R. Liu, I. Maric, P. Spasojevic, and R. Yates, “Discrete memoryless interference and  broadcast channels with confidential messages: Secrecy rate regions,” IEEE Trans.Inf. Theory, vol. 54, no. 6, pp. 2493–2507, Jun. 2008.

    Article  MathSciNet  Google Scholar 

  16. J. Barros and M. R. D. Rodrigues, “Secrecy capacity of wireless channels,” in Proc. IEEE Int. Symp. Information Theory, Seattle, WA, pp. 356–360, Jul. 2006,.

    Google Scholar 

  17. 17. Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Secure communication over fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2470–2492, Jun. 2008.

    Article  MathSciNet  Google Scholar 

  18. 18. Z. Li, R. Yates, and W. Trappe, “Secrecy capacity of indepedent parallel channels,” in Proc. 44th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep. 2006.

    Google Scholar 

  19. P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory, submitted, Oct. 2006. [Online]. Available: http://arxiv.org/abs/cs/0610103

    Google Scholar 

  20. 20. X. Tang, R. Liu, P. Spasojevic, and H. V. Poor, “On the throughput of secure hybrid- ARQ protocols for Gaussian block-fading channels,” IEEE Trans. Inf. Theory, submitted, Dec. 2007. [Online]. Available: http://arxiv.org/abs/0712.4135

    Google Scholar 

  21. 21. S. Shamai, L. Ozarow, and A. Wyner, “Information theoretic considerations for cellular mobile radio,” IEEE Trans. Veh. Technol., vol. 43, no. 2, pp. 359–378, May 1994.

    Article  Google Scholar 

  22. 22. E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: Information-theoretic and communications aspects,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 1895–1911, Oct. 1998.

    Article  MathSciNet  Google Scholar 

  23. 23. H. Holma and A. Toskala, WCDMA for UMTS, 2nd ed. New York: Wiley, 2002.

    Book  Google Scholar 

  24. 24. T. Cover and J. Thomas, Elements of Information Theory. New York: John Wiley & Sons, Inc., 1991.

    Book  MATH  Google Scholar 

  25. 25. M. Zorzi and R. R. Rao, “On the use of renewal theory in the analysis of ARQ protocols,” IEEE Trans. Commun., vol. 44, no. 9, pp. 1077–1081, Sep. 1996.

    Article  Google Scholar 

  26. Physical Layer Standard for CDMA2000 Spread Spectrum Systems (Revision C), 3GPP2 Std. C.S0002-C, 2004.

    Google Scholar 

  27. 27. J. Luo, R. Yates, and P. Spasojevic, “Service outage based power and rate allocation for parallel fading channels,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2594–2611, Jul. 2005.

    Article  MathSciNet  Google Scholar 

  28. 28. T. Ghanim and M. Valenti, “The throughput of hybrid-ARQ in block fading under modulation constraints,” in Proc. IEEE Conference on Information Sciences and Systems, Princeton, NJ, Mar. 2006.

    Google Scholar 

  29. 29. L. H. Ozarow and A. D. Wyner, “Wire-tap channel II,” Bell Syst. Tech. J., vol. 63, no. 10, pp. 2135–2157, Dec. 1984.

    MATH  Google Scholar 

  30. 30. A. Thangaraj, S. Dihidar, A. R. Calderbank, S. McLaughlin, and J. M. Merolla, “Applications of LDPC codes to the wiretap channel,” IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2933–2945, Aug. 2007.

    Article  MathSciNet  Google Scholar 

  31. R. Liu, Y. Liang, H. V. Poor, and P. Spasojevic, “Secure nested codes for type II wiretap channels,” in Proc. IEEE Information Theory Workshop on Frontiers in Coding Theory, Lake Tahoe, CA, Sep. 2-6, 2007.

    Google Scholar 

  32. 32. Y. Liang, H. V. Poor, S. Shamai, “Information Theoretic Security.” in Foundations and Trends in Communications and Information Theory. vol. 5, nos. 4-5, pp. 355–580, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tang, X., Spasojević, P., Liu, R., Poor, H. (2009). Hybrid-ARQ Schemes for Reliable and Secret Wireless Communications. In: Liu, R., Trappe, W. (eds) Securing Wireless Communications at the Physical Layer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1385-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1385-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1384-5

  • Online ISBN: 978-1-4419-1385-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics