Advertisement

Obtaining Secrecy through Intentional Uncertainty

  • Satashu Goel
  • Rohit Negi
Chapter

Abstract

The tremendous popularity of wireless medium for communications is mainly because of the broadcast nature, which allows access to multimedia and information without restriction on the user’s location. However, guaranteeing secure communication in a wireless medium is made difficult by the same broadcast nature, which makes it easy to eavesdrop on an ongoing communication, while making it nearly impossible to detect eavesdropping. The time-varying and unreliable nature of the wireless channels poses further difficulties. However, the same physical properties, which have a detrimental effect on reliability in communication, provide an opportunity to enhance the secrecy of communication, if used carefully.

Keywords

Outage Probability Multiple Input Multiple Output Channel Gain Secret Message Multiple Input Multiple Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J., vol. 28, pp. 656–715, 1949.MATHMathSciNetGoogle Scholar
  2. 2.
    R. L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. Csiszar, J. Korner, “Broadcast Channels with Confidential Messages,” IEEE Trans. Info. Theory, pp. 339–348, May 1978.Google Scholar
  4. 4.
    A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.MathSciNetGoogle Scholar
  5. 5.
    S. Leung-Yan-Cheong, M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Info. Theory, vol. 24, no. 4, pp. 451–456, July 1978.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    U. M. Maurer, “Secret Key Agreement by Public Discussion from Common Information,” IEEE Trans. Info. Theory, vol. 39, no. 3, pp. 733–742, May 1993.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Negi, S. Goel, “Secret Communication using Artificial Noise,” Proc. VTC Fall 2005, vol. 3, pp. 1906–1910, Sept. 2005.CrossRefGoogle Scholar
  8. 8.
    S. Goel, R. Negi, “Secret Communication in Presence of Colluding Eavesdroppers,” Proc. MILCOM, vol. 3, pp. 1501–1506, Nov. 2005.Google Scholar
  9. 9.
    S. Goel, R. Negi, “Guaranteeing Secrecy using Artificial Noise,” to appear in IEEE Trans. Wireless Comm., June 2008.Google Scholar
  10. 10.
    J. Proakis, “Digital Communications,” McGraw-Hill, 1989.Google Scholar
  11. 11.
    G. J. Foschini, M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun.: Kluwer Academic Press, no. 6, pp. 311–335, 1998.Google Scholar
  12. 12.
    X. Li, M. Chen, E. P. Ratazzi “Space-time transmissions for wireless secret-key agreement with information-theoretic secrecy,” Proc. IEEE SPAWC 2005, pp. 811–815, June 2005.Google Scholar
  13. 13.
    H. Koorapaty, A. A. Hassan, S. Chennakeshu, “Secure Information Transmission for Mobile Radio,” IEEE Trans. Wireless Commun., pp. 52–55, July 2003.Google Scholar
  14. 14.
    A. E. Hero, “Secure Space-Time Communication,” IEEE Trans. Info. Theory, pp. 3235–3249, Dec. 2003.Google Scholar
  15. 15.
    U. M. Maurer, S. Wolf, “Unconditionally Secure Key Agreement and the Intrinsic Conditional Information,” IEEE Trans. Info. Theory, vol. 45, no. 2, pp. 499–514, March 1999.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Z. Li, W. Trappe, R. Yates, “Secret Communication via Multi-antenna Transmission,” Proc. CISS ’07, pp. 905–910, Mar. 2007, Baltimore, MD.Google Scholar
  17. 17.
    J. Barros, M. R. D. Rodrigues, “Secrecy capacity of wireless channels,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT) 2006, July 2006.Google Scholar
  18. 18.
    D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. E. Costa, K. Huber, “Multiple-Input-Multiple-Output measurements and modeling in Manhattan,” IEEE J. Select. Areas Commun., vol. 21, no. 3, pp. 321–331, Apr. 2003.CrossRefGoogle Scholar
  19. 19.
    E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecomm. ETT, vol. 10, no. 6, pp. 585–596, Nov. 1999.CrossRefGoogle Scholar
  20. 20.
    G. J. Foschini, D. Chizhik, M. J. Gans, C. Papadias, R. A. Valenzuela, “Analysis and performance of some basic spacetime architectures,” IEEE J. Select. Areas Commun., Special Issue on MIMO Systems, pt. I, vol. 21, pp. 303–320, Apr. 2003.CrossRefGoogle Scholar
  21. 21.
    B. M. Hochwald, T. L. Marzetta, V. Tarokh, “Multiple-antenna channel hardening and its implications for rate feedback and scheduling,” IEEE Trans. Inform. Theory, vol. 50, no. 9, pp. 1893–1909, Sep. 2004.CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large dimensional random matrices,” J. Mult. Anal., vol. 54, pp. 175–192, 1995.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    U. Maurer, S. Wolf, “Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free,” Lecture Notes in Computer Science, vol. 1807, pp. 352–368, Springer- Verlag, 2000.Google Scholar
  24. 24.
    J. N. Laneman, D. N. C. Tse, G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Info. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Y. Liang, H. V. Poor, S. Shamai, “Secure Communication over Fading Channels,” IEEE Trans. Info. Theory, vol. 54, no. 6, pp. 2470 – 2492, June 2008.CrossRefMathSciNetGoogle Scholar
  26. 26.
    D. Welch, S. Lathrop, “Wireless security threat taxonomy,” Proc. IEEE Information Assurance Workshop, 2003, pp. 76– 83, Nov. 2006.Google Scholar
  27. 27.
    F. Oggier, B. Hassibi, “The Secrecy Capacity of the MIMO Wiretap Channel,” Preprint, available at http://arxiv.org/PS cache/arxiv/pdf/0710/0710.1920v1.pdf.
  28. 28.
    S. Shafiee, S. Ulukus, “Achievable Rates in Gaussian MISO Channels with Secrecy Constraints,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT) 2007, June 2007.Google Scholar
  29. 29.
    S. Shafiee, N. Liu, S. Ulukus, “Towards the Secrecy Capacity of the Gaussian MIMO Wire-tap Channel: The 2-2-1 Channel,” Preprint, available at http://arxiv.org/PS cache/arxiv/pdf/0709/0709.3541v1.pdf.
  30. 30.
    A. Khisti, G. W. Wornell, “Secure Transmission with Multiple Antennas: The MISOME Wiretap Channel,” Preprint, available at http://cache/arxiv/pdf/0708/0708.4219v1.pdf.
  31. 31.
    A. Khisti, G. W. Wornell, “The MIMOME Channel,” Preprint, available at http://arxiv.org/PS cache/arxiv/pdf/0710/0710.1325v1.pdf.
  32. 32.
    R. Liu, V. Poor, “Multiple Antenna Secure Broadcast over Wireless Networks,” Preprint, available at http://arxiv.org/PS cache/arxiv/pdf/0705/0705.1183v1.pdf.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations