Advertisement

Secret Key Generation Among Multiple Terminals with Applications to Wireless Systems

  • Chunxuan Ye
  • Alex Reznik
Chapter

Abstract

The security of most existing cryptosystems relies on the (unproven) difficulty in solving a computational problem, e.g., factoring large integers or computing discrete logarithms in certain groups (cf. e.g.,[11]). This notion of security is called computational complexity security, as it is based on the assumption that an adversary has restricted computational power and lacks “efficient algorithms.„ However, this assumption is being weakened with the development of efficient algorithms as well as the increase in computational power of modern computers (e.g., quantum computer).

Keywords

Channel State Information Steiner Tree LDPC Code Broadcast Channel Public Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography, Part I: Secret sharing,” IEEE Trans. Inform. Theory, vol. 39, pp. 1121–1132, July 1993.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    T. Aono, K. Higuchi, T. Ohira, B. Komiyama and H. Sasaoka, “Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels,” IEEE Trans. Antennas Propagation, vol. 53, pp. 3776–3784, 2005.CrossRefGoogle Scholar
  3. 3.
    J. Barros and M. R. D. Rodrigues, “Secrecy Capacity of Wireless Channels,” Proc. IEEE Int. Symp. Inform. Theory, pp. 356–360, July 2006.Google Scholar
  4. 4.
    C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental quantum cryptography,” J. Cryptology, vol. 5, pp. 3–28, 1992.MATHCrossRefGoogle Scholar
  5. 5.
    C. H. Bennett, G. Brassard and J. M. Robert, “How to reduce your enemy’s information,” Advances in Cryptology - CRYPTO, pp. 468–476, 1986.Google Scholar
  6. 6.
    C. H. Bennett, G. Brassard and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comput., vol. 17, pp. 210–229, Apr. 1988.CrossRefMathSciNetGoogle Scholar
  7. 7.
    C. H. Bennett, G. Brassard, C. Crepeau and U. Maurer, “Generalized privacy amplification,” IEEE Trans. Inform. Theory, vol. 41, pp. 1915–1923, Nov. 1995.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Bloch, J. Barros, M. R. D. Rodrigues and S. W. McLaughlin, “Wireless informationtheoretic security–Part I: Theoretical aspects,” e-print arXiv: cs.IT/0611120, 2006.Google Scholar
  9. 9.
    M. Bloch, J. Barros, M. R. D. Rodrigues and S. W. McLaughlin, “Wireless informationtheoretic security–Part II: Practical implementation,” e-print arXiv: cs.IT/0611121, 2006.Google Scholar
  10. 10.
    G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Advances in Cryptology - EUROCRYPT, pp. 410–423, 1994.Google Scholar
  11. 11.
    J. A. Buchmann, Introduction to Cryptography, New York: Springer, 2000.MATHGoogle Scholar
  12. 12.
    C. Cachin and U. Maurer, “Linking information reconciliation and privacy amplification,” J. Cryptology, vol. 10, pp. 97–110, 1997.MATHCrossRefGoogle Scholar
  13. 13.
    J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” J. Comput. Syst. Scien., vol. 18, pp. 143–154, 1979.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Y. Chen and A. J. Han Vinck, “Wiretap channel with side information,”, Proc. Int. Symp. Inform. Theory, pp. 2607–2611, July 2006.Google Scholar
  15. 15.
    J. Chen, D. He and E. Yang, “On the codebook-level duality between Slepian-Wolf coding and channel coding,” Proc. IEEE Inform. Theory Appl. Workshop, pp. 84–93, Feb. 2007.Google Scholar
  16. 16.
    T. P. Coleman, A. H. Lee, M. M´edard, and M. Effros, “Low-Complexity Approaches to Slepian-Wolf Near-Lossless Distributed Data Compression,” IEEE Trans. Inform. Theory, vol. 52, pp. 3546–3561, Aug. 2006.CrossRefMathSciNetGoogle Scholar
  17. 17.
    R. Cramer, Y. Dodis, S. Fehr, C. Padr´o and D. Wichs, “Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors,” Advances in Cryptology - EUROCRYPT, Apr. 2008.Google Scholar
  18. 18.
    I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 339–348, May 1978.CrossRefGoogle Scholar
  19. 19.
    I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic, New York, N.Y., 1982.Google Scholar
  20. 20.
    I. Csiszár and P. Narayan, “Common randomness and secret key generation with a helper,” IEEE Trans. Inform. Theory, vol. 46, pp. 344–366, Mar. 2000.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,” IEEE Trans. Inform. Theory, vol. 50, pp. 3047–3061, Dec. 2004.CrossRefMathSciNetGoogle Scholar
  22. 22.
    I. Csiszár and P. Narayan, “Secrecy capacities for multiterminal channel models,” IEEE Trans. Inform. Theory, Jun. 2008.Google Scholar
  23. 23.
    Y. Dodis, J. Katz, L. Reyzin and A. Smith, “Robust fuzzy extractors and authenticated key agreement from close secrets,” Advances in Cryptology - CRYTPO, Aug. 2006.Google Scholar
  24. 24.
    Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics and other noisy data,” SIAM J. Comput., pp. 97–139, 2008.Google Scholar
  25. 25.
    H. N. Gabow and H. H. Westermann, “Forests, frames, and games: algorithms for matroid sums and applications,” Algorithmica, 7: pp. 465–497, 1992.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    P. Gács and J. Körner, “Common information is far less than mutual information,” Probl. Contr. Inform. Theory, vol. 2, pp. 149–162, 1973.MATHGoogle Scholar
  27. 27.
    J. Garcia-Frias and Y Zhao, “Compression of correlated binary sources using turbo codes,” IEEE Commun. Lett., vol. 5, pp. 417–419, Oct. 2001.CrossRefGoogle Scholar
  28. 28.
    A. A. Gohari and V. Anantharam, “Information-theoretic key agreement of multiple terminals—Part I: Source model,” IEEE Trans. Inform. Theory, submitted.Google Scholar
  29. 29.
    A. A. Gohari and V. Anantharam, “Information-theoretic key agreement of multiple terminals—Part II: Channel model,” IEEE Trans. Inform. Theory, submitted.Google Scholar
  30. 30.
    P. Gopala, L. Lai and H. El Gamal, “On the Secrecy Capacity of Fading Channels,” e-print arXiv: cs.IT/0610103, 2006.Google Scholar
  31. 31.
    J. Grubb, S. Vishwanath, Y. Liang and H. V. Poor, “Secrecy capacity for semideterministic wire-tap channels,” Proc. IEEE Inform. Theory Workshop Wireless Networks, 2007.Google Scholar
  32. 32.
    A. A. Hassan, W. E. Stark, J. E. Hershey and S. Chennakeshu, “Cryptographic key agreement for mobile radio,” IEEE Digital Signal Processing Mag., vol. 6, pp. 207-212, 1996.CrossRefGoogle Scholar
  33. 33.
    J. E. Hershey, A. A. Hassan and R. Yarlagadda, “Unconventional cryptographic keying variable management,” IEEE Trans. Commun., vol. 43, pp. 3–6, Jan. 1995.MATHCrossRefGoogle Scholar
  34. 34.
    H. Imai, K. Kobara and K. Morozov, “On the possibility of key agreement using variable directional antenna,” Proc. Joint Workshop Inform. Security, 2006.Google Scholar
  35. 35.
    A. Khisti, A. Tchamkerten and G. W. Wornell, “Secure broadcasting,” e-print arXiv: cs.IT/0702093, 2007.Google Scholar
  36. 36.
    A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas: The MISOME wiretap channel,” e-print arXiv: cs.IT/07084219, 2007.Google Scholar
  37. 37.
    A. Khisti, G. W. Wornell, A. Wiesel and Y. Eldar, “On the Gaussian MIMI wiretap channel,” Proc. IEEE Int. Symp. Inform. Theory, pp. 2471–2475, Jun. 2007.Google Scholar
  38. 38.
    H. Kooraparty, A. A. Hassan and S. Chennakeshu, “Secure information transmission for mobile radio,” IEEE Commun. Lett., vol. 4, pp. 52–55, Feb. 2000.CrossRefGoogle Scholar
  39. 39.
    L. Lai and H. El Gamal, “The relay-eavesdropper channel: Cooperation for secrecy,” IEEE Trans. Inform. Theory, submitted.Google Scholar
  40. 40.
    L. Lai, H. El Gamal and H. V. Poor, “The wiretap channel with feedback: Encryption over the channel,” e-print arXiv: cs.IT/07042259, 2007.Google Scholar
  41. 41.
    S. L. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inform. Theory, vol. 24, pp. 451–456, July 1978.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Z. Li, R. Yates and W. Trappe, “Secrecy capacity of independent parallel channels,” Proc. Allerton Conf. Commun. Control, Comput., Sept. 2006.Google Scholar
  43. 43.
    Z. Li, R. Yates and W. Trappe, “Secure communication with a fading eavesdropper channel,” Proc. IEEE Int. Symp. Inform. Theory, pp. 1296–1300, Jun. 2007.Google Scholar
  44. 44.
    Z. Li, W. Trappe and R. Yates, “Secret communication via multi-antenna transmission,” Proc. Conf. Inform. Scien. Syst., Mar. 2007.Google Scholar
  45. 45.
    Y. Liang and H. V. Poor, “Multiple access channels with confidential messages,” IEEE Trans. Inform. Theory, vol. 54, pp. 976–1002, Mar. 2008.CrossRefMathSciNetGoogle Scholar
  46. 46.
    Y. Liang, H. V. Poor and S. Shamai, “Secure communication over fading channels,” IEEE Trans. Inform. Theory, Jun. 2008.Google Scholar
  47. 47.
    R. Liu, Y. Liang, H. V. Poor and P. Spasojevic, “Secure nested codes for Type II wiretap channels,” Proc. IEEE Inform. Theory Workshop, pp. 337–342, Sept. 2007.Google Scholar
  48. 48.
    R. Liu, I. Marić, R. Yates and P. Spasojević, “The discrete memoryless multiple access channel with confidential messages,” Proc. Int. Symp. on Inform. Theory, pp. 957–961, July 2006.Google Scholar
  49. 49.
    R. Liu, I. Marić, P. Spasojević and R. Yates, “Discrete memoryless interference and broadcast channels with confidential messages: Secrecy capacity regions,” IEEE Trans. Inform. Theory, Jun. 2008.Google Scholar
  50. 50.
    R. Liu and H. V. Poor, “Secrecy capacity region of a multi-antenna Gaussian broadcast channel with confidential messages,” e-print arXiv: cs.IT/07094671, 2007.Google Scholar
  51. 51.
    A. D. Liveris, Z. Xiong, C. N. Georghiades, “Compression of binary sources with side information at the decoding using LDPC codes,” IEEE Commun. Lett., vol. 6, pp. 440–442, Oct. 2002.CrossRefGoogle Scholar
  52. 52.
    S. Mathur, W. Trappe, N. Mandayam, C. Ye and A. Reznik, “Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel,” Proc. ACM Conf. Mobile Comput. Network., Sept. 2008.Google Scholar
  53. 53.
    U. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inform. Theory, vol. 39, pp. 733–742, May 1993.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    U. M. Maurer, “The strong secret key rate of discrete random triples,” Communications and Cryptography: Two Sides of One Tapestry, R. E. Blahut et al., Ed., Kluwer, Norwell, MA, Ch. 26, pp. 271–285, 1994.Google Scholar
  55. 55.
    U. M. Maurer, “Information-theoretically secure secret-key agreement by NOT authenticated public discussion,” in Advances in Cryptology - EUROCRYPT, 1997.Google Scholar
  56. 56.
    U. M. Maurer and S. Wolf, “Information-theoretic key agreement: from weak to strong secrecy for free,” Advances in Cryptology - EUROCRYPT, pp. 351–368, May 2000.Google Scholar
  57. 57.
    U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels— Part I: Definitions and a completeness result,” IEEE Trans. Inform. Theory, vol. 49, pp. 822–831, Apr. 2003.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels— Part II: The simulatability condition,” IEEE Trans. Inform. Theory, vol. 49, pp. 832–838, Apr. 2003.MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels— Part III: Privacy amplification,” IEEE Trans. Inform. Theory, vol. 49, pp. 839–851, Apr. 2003.MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    C. Mitrpant, A. J. H. Vinck and Y. Luo, “An achievable region for the Gaussian wiretap channel with side information,” IEEE Trans. Inform. Theory, vol. 52, pp. 2181–2190, May 2006.CrossRefMathSciNetGoogle Scholar
  61. 61.
    J. Muramatsu, “Secret key agreement from correlated source outputs using LDPC matrices,” IEICE Trans. Fundamentals, vol. E89-A, pp. 2036–2046, July 2006.CrossRefGoogle Scholar
  62. 62.
    C. St. J. A. Nash-Williams, “Edge disjoint spanning trees of finite graphs,” J. London Math. Soc., 36, pp. 445–450, 1961.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    S. Nitinawarat, C. Ye, A. Barg, P. Narayan and A. Reznik, “Secret key generation for a pairwise independent network model,” Proc. Int. Symp. Inform. Theory, pp. 1015–1019, July 2008.Google Scholar
  64. 64.
    P. Parada and R. Blahut, “Secrecy capacity of SIMO and slow fading channels,” Proc. IEEE Int. Symp. Inform. Theory, pp. 2152–2155, Sept. 2005.Google Scholar
  65. 65.
    S. S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes (DISCUS): Design and construction,” IEEE Trans. Inform. Theory, vol. 49, pp. 626–643, Mar. 2003.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    R. Raz, I. Reingold and S. Vadhan, “Extracting all the randomness and reducing the error in Trevisan’s extractors,” Proc. Symp. Theory of Comput., pp. 149–158, 1999.Google Scholar
  67. 67.
    R. Renner and S. Wolf, “New bounds in secret-key agreement: the gap between formation and secrecy extraction,” Advances in Cryptology - EUROCRYPT, pp. 562–577, 2003.Google Scholar
  68. 68.
    A. Reznik, A. Carlton, A. Briancon, Y. Shah, P. Chitrapu, R. Mukherjee and M. Rudolf, “Method and system for securing wireless communications,” U.S. patent application 20060133338, 11/283017, Jun. 2006.Google Scholar
  69. 69.
    A. Schrijver, Theory of Linear and Integer Programming, New York: John Wiley and Sons, 1986.MATHGoogle Scholar
  70. 70.
    A. Schrijver, Combinatorial Optimization — Polyhedra and Efficiency, New York: Springer, 2003.MATHGoogle Scholar
  71. 71.
    S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO channels with secrecy constraints,” Proc. IEEE Int. Symp. Inform. Theory, pp. 2466–2470, June. 2007.Google Scholar
  72. 72.
    C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J., vol. 28, pp. 656–715, Oct. 1949.MATHMathSciNetGoogle Scholar
  73. 73.
    X. Tang, R. Liu, P. Spasojevic and H. V. Poor, “Interference-assisted secret communication,”, Proc. IEEE Inform. Theory Workshop, May 2008.Google Scholar
  74. 74.
    E. Tekin and A. Yener, “The Gaussian multiple access wire-tap channel with collective secrecy constraints,” Proc. Int. Symp. Inform. Theory, pp. 1164–1168, July 2006.Google Scholar
  75. 75.
    A. Thangaraj, S. Dihidar, A. R. Calderbank, S. McLaughlin and J. M. Merolla, “Capacity achieving codes for the wiretap channel with applications to quantum key distribution,” e-print arXiv: cs.IT/0411003, 2004.Google Scholar
  76. 76.
    W. T. Tutte, “On the problem of decomposing a graph into n connected factors,” J. London Math. Soc., 36, pp. 221–230, 1961.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    M. N. Wegman and J. Carter, “New hash functions and their use in authentication and set equality,” J. Comput. Syst. Scien., vol. 22, pp. 265–279, 1981.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    R. Wilson, D. Tse and R. Scholtz, “Channel identification: Secret sharing using reciprocity in ultrawideband channels,” IEEE Trans. Inform. Foren. and Security, vol. 2, pp. 364–375, Sept. 2007.CrossRefGoogle Scholar
  79. 79.
    A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, pp. 1355–1387, Oct. 1975.MathSciNetGoogle Scholar
  80. 80.
    L. Xiao, L. Greenstein, N. Mandayam and W. Trappe, “Using the physical layer for wireless authentication under time-variant channels,” IEEE Trans. Wireless Commun., to appear.Google Scholar
  81. 81.
    C. Ye and P. Narayan, “The private key capacity region for three terminals,” Proc. Int. Symp. on Inform. Theory, p 44, Jun. 2004.Google Scholar
  82. 82.
    C. Ye and P. Narayan, “Secret key and private key constructions for simple multiterminal source models,” Proc. Int. Symp. Inform. Theory, pp. 2133–2137, Sept. 2005.Google Scholar
  83. 83.
    C. Ye and P. Narayan, “The secret key-private key capacity region for three terminals,” Proc. IEEE Int. Symp. Inform. Theory, pp. 2142–2146, Sept. 2005.Google Scholar
  84. 84.
    C. Ye, A. Reznik and Y. Shah, “Extracting secrecy from jointly Gaussian random variables,” Proc. Int. Symp. Inform. Theory, pp. 2593–2597, July 2006.Google Scholar
  85. 85.
    C. Ye and A. Reznik, “Group secret key generation algorithms,” Proc. Int. Symp. Inform. Theory, pp. 2596–2600, Jun. 2007.Google Scholar
  86. 86.
    C. Ye, A. Reznik, Y. Shah and G. Sternberg, “Method and system for generating a secret key from joint randomness,” U.S. patent application 20070165845, 11/612671, July 2007.Google Scholar
  87. 87.
    M. Yuksel and E. Erkip, “The relay channel with a wire-tapper,” Proc. Conf. Inform. Scien. Syst., Mar. 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.InterDigitalKing of Prussia, PAUSA

Personalised recommendations