Secrecy Capacity of Independent Parallel Channels

Chapter

Abstract

Ensuring the confidentiality of communications is fundamental to securing any network. This requirement becomes particularly important for wireless systems, where eavesdropping is facilitated by the broadcast nature of the wireless medium. Rather than physically guard the communication medium to provide confidentiality, the traditional approach is to employ cryptographic algorithms to ensure that only legitimate users can correctly interpret the messages, while all other entities fail to glean any useful information.

Keywords

Entropy Paral Allo Glean Cryptol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Shannon. Communication theory of secrecy systems. Bell Sys. Tech. J., 28:657–715, 1949.Google Scholar
  2. 2.
    A. Wyner. The wire-tap channel. Bell. Syst. Tech. J., 54(8):1355–1387, January 1975.MathSciNetGoogle Scholar
  3. 3.
    I. Csiszár and J. Körner. Broadcast channels with confidental messages. IEEE Trans. on Inf. Theory, 24(3):339–348, May 1978.MATHCrossRefGoogle Scholar
  4. 4.
    Ueli M. Maurer and Stefan Wolf. Information-theoretic key agreement: From weak to strong secrecy for free. In EUROCRYPT, pages 351–368, 2000.Google Scholar
  5. 5.
    C. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer. Generalized privacy amplification. IEEE Trans. on Information Theory, 41:1915–1923, 1995.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Körner and K. Marton. Comparison of two noisy channels. In I. Csiszár and P. Elias, editors, Topics In Information Theory, pages 411–423. Colloquia Mathematica Societatis Janos Bolyai, Amsterdam, The Netherlands: North Holland, 1977.Google Scholar
  7. 7.
    S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.Google Scholar
  8. 8.
    M. Van Dijk. On a special class of broadcast channels with confidential messages. IEEE Trans. Information Theory, 43(2):712–714, March 1997.MATHCrossRefGoogle Scholar
  9. 9.
    S. K. Leung-Yan-Cheong and M. Hellman. The gaussian wire-tap channel. Information Theory, IEEE Transactions on, 24(4):451–456, Jul 1978.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge University Press, 2005.Google Scholar
  11. 11.
    A. J. Goldsmith and P. P. Varaiya. Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6):pp. 1986–1992, Nov. 1997.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    G. Caire and S. Shamai. On the capacity of some channels with channel state information. IEEE Transactions on Information Theory, 45(6):2007–2019, Sep. 1999.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Verdú. Spectral efficiency in the wideband regime. IEEE Trans. on Information Theory, 48(6):1319–1343, June 2002.MATHCrossRefGoogle Scholar
  14. 14.
    E. Telatar and D. N. C. Tse. Capacity and mutual information of wideband multipath fading channels. IEEE Trans. on Information Theory, 46(4):1384–1400, July 2000.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Medard and R.G. Gallager. Bandwidth scaling for fading multipath channels. IEEE Trans. Inform. Theory, 48(6):840–852, April 2002.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. Verdu. Recent results on the capacity of wideband channels in the low-power regime. IEEE Wireless Communications, pages 40–45, August 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Wireless Information Network Laboratory (WINLAB)Rutgers UniversityNorth Brunswick, NJUSA

Personalised recommendations