Advertisement

Neurocognition in Mitochondrial Disorders

  • Kevin M. Antshel
Chapter

Abstract

A mitochondrion (plural mitochondria) is a specialized cellular subunit found in most living cells. Mitochondria generate most of a cell’s supply of adenosine triphosphate (ATP) and supply the cell with energy primarily derived from oxidation of carbohydrates and fatty acids in the mitochondria. A mitochondrion has its own DNA and its own transcription and translation processes. The mitochondrial DNA encodes only 13 polypeptides which are located in the inner mitochondrial membrane as subunits of the respiratory chain complexes.

Keywords

Apparent Diffusion Coefficient Sensorineural Hearing Loss Mitochondrial Disease Mitochondrial Disorder Leigh Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schapira AH. Mitochondrial disease. Lancet. 1 Jul 2006;368(9529):70–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Leonard JV, Schapira AH. Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet. 22 Jan 2000;355(9200):299–304.PubMedCrossRefGoogle Scholar
  3. 3.
    Leonard JV, Schapira AH. Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet. 29 Jan 2000;355(9201):389–94.PubMedCrossRefGoogle Scholar
  4. 4.
    Schon EA, Bonilla E, DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. Apr 1997;29(2):131–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Arpa J, Cruz-Martinez A, Campos Y, et al. Prevalence and progression of mitochondrial diseases: a study of 50 patients. Muscle Nerve. Dec 2003;28(6):690–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Majamaa K, Moilanen JS, Uimonen S, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet. Aug 1998;63(2):447–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Barragan-Campos HM, Vallee JN, Lo D, et al. Brain magnetic resonance imaging findings in patients with mitochondrial cytopathies. Arch Neurol. May 2005;62(5):737–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Scaglia F, Wong LJ, Vladutiu GD, Hunter JV. Predominant cerebellar volume loss as a neuroradiologic feature of pediatric respiratory chain defects. AJNR Am J Neuroradiol. Aug 2005;26(7):1675–80.PubMedGoogle Scholar
  9. 9.
    Hirano M, Ricci E, Koenigsberger MR, et al. Melas: an original case and clinical criteria for diagnosis. Neuromuscul Disord. 1992;2(2):125–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol. Jan 1994;9(1):4–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Sano M, Polanco Y, De Vivo DC. Comparative analysis of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes and myoclonus epilepsy and ragged red fibers. Ann Neurol. 1998;44:576–677.Google Scholar
  12. 12.
    Sparaco M, Bonilla E, DiMauro S, Powers JM. Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol. Jan 1993;52(1):1–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanji K, Kunimatsu T, Vu TH, Bonilla E. Neuropatho-logical features of mitochondrial disorders. Semin Cell Dev Biol. Dec 2001;12(6):429–39.PubMedCrossRefGoogle Scholar
  14. 14.
    Betts J, Lightowlers RN, Turnbull DM. Neuropathological aspects of mitochondrial DNA disease. Neurochem Res. Mar 2004;29(3):505–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Finsterer J, Jarius C, Baumgartner M. Parkinson’s disease associated with impaired oxidative phosphorylation. Neuroradiology. Nov 2001;43(11):997–1000.PubMedCrossRefGoogle Scholar
  16. 16.
    Grunwald F, Zierz S, Broich K, Schumacher S, Bockisch A, Biersack HJ. HMPAO-SPECT imaging resembling Alzheimer-type dementia in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS). J Nucl Med. Oct 1990;31(10):1740–42.PubMedGoogle Scholar
  17. 17.
    Abe K, Yoshimura H, Tanaka H, Fujita N, Hikita T, Sakoda S. Comparison of conventional and diffusion-weighted MRI and proton MR spectroscopy in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like events. Neuroradiology. Feb 2004;46(2):113–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Moller HE, Kurlemann G, Putzler M, Wiedermann D, Hilbich T, Fiedler B. Magnetic resonance spectroscopy in patients with MELAS. J Neurol Sci. 15 Mar 2005; 229–230:131–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Iizuka T, Sakai F, Kan S, Suzuki N. Slowly progressive spread of the stroke-like lesions in MELAS. Neurology. 11 Nov 2003;61(9):1238–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Kolb SJ, Costello F, Lee AG, et al. Distinguishing ischemic stroke from the stroke-like lesions of MELAS using apparent diffusion coefficient mapping. J Neurol Sci. 15 Dec 2003;216(1):11–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Fiehler J, Knudsen K, Kucinski T, et al. Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke. Feb 2004;35(2):514–19.PubMedCrossRefGoogle Scholar
  22. 22.
    Oppenheim C, Galanaud D, Samson Y, et al. Can diffusion weighted magnetic resonance imaging help differentiate stroke from stroke-like events in MELAS? J Neurol Neurosurg Psychiatry. Aug 2000;69(2):248–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Beauchamp NJ Jr., Barker PB, Wang PY, vanZijl PC. Imaging of acute cerebral ischemia. Radiology. Aug 1999;212(2):307–24.PubMedGoogle Scholar
  24. 24.
    Neargarder SA, Murtagh MP, Wong B, Hill EK. The neuropsychologic deficits of MELAS: evidence of global impairment. Cogn Behav Neurol. Jun 2007;20(2):83–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Allard JC, Tilak S, Carter AP. CT and MR of MELAS syndrome. AJNR Am J Neuroradiol. Nov–Dec 1988;9(6):1234–38.PubMedGoogle Scholar
  26. 26.
    Selemon LD, Goldman-Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci. Nov 1988;8(11):4049–68.PubMedGoogle Scholar
  27. 27.
    Iizuka T, Sakai F, Ide T, Miyakawa S, Sato M, Yoshii S. Regional cerebral blood flow and cerebrovascular reactivity during chronic stage of stroke-like episodes in MELAS – implication of neurovascular cellular mechanism. J Neurol Sci. 15 Jun 2007;257(1–2):126–38.PubMedCrossRefGoogle Scholar
  28. 28.
    Kartsounis LD, Troung DD, Morgan-Hughes JA, Harding AE. The neuropsychological features of mitochondrial myopathies and encephalomyopathies. Arch Neurol. Feb 1992;49(2):158–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Kaufmann P, Shungu DC, Sano MC, et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology. 27 Apr 2004;62(8):1297–302.PubMedCrossRefGoogle Scholar
  30. 30.
    Staub F, Mackert B, Kempski O, Peters J, Baethmann A. Swelling and death of neuronal cells by lactic acid. J Neurol Sci. Oct 1993;119(1):79–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Nedergaard M, Goldman SA, Desai S, Pulsinelli WA. Acid-induced death in neurons and glia. J Neurosci. Aug 1991;11(8):2489–97.PubMedGoogle Scholar
  32. 32.
    Rehncrona S, Rosen I, Siesjo BK. Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab. 1981;1(3):297–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Sartor H, Loose R, Tucha O, Klein HE, Lange KW. MELAS: a neuropsychological and radiological follow-up study. Mitochondrial encephalomyopathy, lactic acidosis and stroke. Acta Neurol Scand. Nov 2002;106(5):309–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Sharfstein SR, Gordon MF, Libman RB, Malkin ES. Adult-onset MELAS presenting as herpes encephalitis. Arch Neurol. Feb 1999;56(2):241–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Amemiya S, Hamamoto M, Goto Y, et al. Psychosis and progressing dementia: presenting features of a mitochondriopathy. Neurology. 22 Aug 2000;55(4):600–1.PubMedCrossRefGoogle Scholar
  36. 36.
    Suzuki T, Koizumi J, Shiraishi H, et al. Mitochondrial encephalomyopathy (MELAS) with mental disorder. CT, MRI and SPECT findings. Neuroradiology. 1990;32(1):74–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Thambisetty M, Newman NJ. Diagnosis and management of MELAS. Expert Rev Mol Diagn. Sept 2004;4(5):631–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Kazuno AA, Munakata K, Mori K, et al. Mitochondrial DNA sequence analysis of patients with ‘atypical psychosis’. Psychiatry Clin Neurosci. Aug 2005;59(4):497–503.PubMedCrossRefGoogle Scholar
  39. 39.
    Kato T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol Psychiatry. 2001;6:625–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Munakata K, Iwamoto K, Bundo M, Kato T. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry. 1 Mar 2005;57(5):525–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Miyaoka H, Suzuki Y, Taniyama M, et al. Mental disorders in diabetic patients with mitochondrial transfer RNA(Leu) (UUR) mutation at position 3243. Biol Psychiatry. 15 Sept 1997;42(6):524–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Hirano M, DiMauro S. Clinical features of mitochondrial myopathies and encephalomyopathies. In: Lane R, editor. Handbook of muscle disease, vol 1. New York, NY: Marcel Dekker Inc; 1996. pp. 479–504.Google Scholar
  43. 43.
    Chomyn A, Meola G, Bresolin N, Lai ST, Scarlato G, Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol. Apr 1991;11(4):2236–44.PubMedGoogle Scholar
  44. 44.
    Masucci JP, Davidson M, Koga Y, Schon EA, King MP. In vitro analysis of mutations causing myoclonus epilepsy with ragged-red fibers in the mitochondrial tRNA(Lys)gene: two genotypes produce similar phenotypes. Mol Cell Biol. May 1995;15(5):2872–81.PubMedGoogle Scholar
  45. 45.
    Degoul F, Nelson I, Lestienne P, et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome and ocular myopathies: genetic, biochemical and morphological studies. J Neurol Sci. Feb 1991;101(2):168–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Lestienne P, Ponsot G. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet. 16 Apr 1988;1(8590):885.PubMedCrossRefGoogle Scholar
  47. 47.
    Bosbach S, Kornblum C, Schroder R, Wagner M. Executive and visuospatial deficits in patients with chronic progressive external ophthalmoplegia and Kearns-Sayre syndrome. Brain. May 2003;126(Pt 5):1231–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. Mar 2001;49(3):377–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. Mar 1990;46(3):428–33.PubMedGoogle Scholar
  50. 50.
    Rossi A, Biancheri R, Bruno C, et al. Leigh Syndrome with COX deficiency and SURF1 gene mutations: MR imaging findings. AJNR Am J Neuroradiol. Jun–Jul 2003;24(6):1188–91.PubMedGoogle Scholar
  51. 51.
    Arii J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol. Sept 2000;21(8):1502–09.PubMedGoogle Scholar
  52. 52.
    Yang YL, Sun F, Zhang Y, et al. Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome. Chin Med J (Engl). 5 Mar 2006;119(5):373–77.Google Scholar
  53. 53.
    Lopez-Gallardo E, Solano A, Herrero-Martin MD, et al. NARP syndrome in a patient harbouring an insertion in the MT-ATP6 gene that results in a truncated protein. J Med Genet. Jan 2009;46(1):64–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Sperl W, Jesina P, Zeman J, et al. Deficiency of mitochondrial ATP synthase of nuclear genetic origin. Neuromuscul Disord. Dec 2006;16(12):821–29.PubMedCrossRefGoogle Scholar
  55. 55.
    Man PY, Turnbull DM, Chinnery PF. Leber hereditary optic neuropathy. J Med Genet. Mar 2002;39(3):162–69.PubMedCrossRefGoogle Scholar
  56. 56.
    Perez F, Anne O, Debruxelles S, et al. Leber’s optic neuropathy associated with disseminated white matter disease: a case report and review. Clin Neurol Neurosurg. Jan 2009;111(1):83–86.PubMedCrossRefGoogle Scholar
  57. 57.
    Howell N. Leber hereditary optic neuropathy: respiratory chain dysfunction and degeneration of the optic nerve. Vision Res. May 1998;38(10):1495–504.PubMedCrossRefGoogle Scholar
  58. 58.
    Harding AE, Sweeney MG, Miller DH, et al. Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain. Aug 1992;115(Pt 4):979–89.PubMedCrossRefGoogle Scholar
  59. 59.
    Jansen PH, van der Knaap MS, de Coo IF. Leber’s hereditary optic neuropathy with the 11 778 mtDNA mutation and white matter disease resembling multiple sclerosis: clinical, MRI and MRS findings. J Neurol Sci. Feb 1996;135(2):176–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Nikoskelainen EK, Marttila RJ, Huoponen K, et al. Leber’s "plus": neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. Aug 1995;59(2):160–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Bione S, D‘Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. Apr 1996;12(4):385–89.PubMedCrossRefGoogle Scholar
  62. 62.
    Kelley RI, Cheatham JP, Clark BJ, et al. X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr. Nov 1991;119(5):738–47.PubMedCrossRefGoogle Scholar
  63. 63.
    Mazzocco MM, Kelley RI. Preliminary evidence for a cognitive phenotype in Barth syndrome. Am J Med Genet. 1 Sept 2001;102(4):372–78.PubMedCrossRefGoogle Scholar
  64. 64.
    Nissenkorn A, Zeharia A, Lev D, et al. Multiple presentation of mitochondrial disorders. Arch Dis Child. Sept 1999;81(3):209–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. Oct 2004;114(4):925–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Uusimaa J, Remes AM, Rantala H, et al. Childhood encephalopathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics. Mar 2000;105(3 Pt 1):598–603.PubMedCrossRefGoogle Scholar
  67. 67.
    Coleman M. Advances in autism research. Dev Med Child Neurol. Mar 2005;47(3):148.PubMedCrossRefGoogle Scholar
  68. 68.
    Oliveira G, Diogo L, Grazina M, et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. Mar 2005;47(3):185–89.PubMedCrossRefGoogle Scholar
  69. 69.
    Chow CK. Vitamin E regulation of mitochondrial superoxide generation. Biol Signals Recept. Jan–Apr 2001;10 (1–2):112–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Komura K, Hobbiebrunken E, Wilichowski EK, Hanefeld FA. Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr Neurol. Jan 2003;28(1):53–58.PubMedCrossRefGoogle Scholar
  71. 71.
    Geromel V, Darin N, Chretien D, et al. Coenzyme Q(10) and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab. Sept–Oct 2002;77(1–2):21–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Matthews PM, Ford B, Dandurand RJ, et al. Coenzyme Q10 with multiple vitamins is generally ineffective in treatment of mitochondrial disease. Neurology. May 1993;43(5):884–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Berbel-Garcia A, Barbera-Farre JR, Etessam JP, et al. Coenzyme Q 10 improves lactic acidosis, strokelike episodes, and epilepsy in a patient with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes). Clin Neuropharmacol. Jul–Aug 2004;27(4):187–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Gomille T, Meyer RA, Falkai P, Gaebel W, Konigshausen T, Christ F. Prevalence and clinical significance of computerized tomography verified idiopathic calcinosis of the basal ganglia. Radiologe. Feb 2001;41(2):205–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Harvey JN, Barnett D. Endocrine dysfunction in Kearns-Sayre syndrome. Clin Endocrinol (Oxf). Jul 1992;37(1):97–103.CrossRefGoogle Scholar
  76. 76.
    Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. Mar 2004;3(3):205–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 15 Nov 2000;529 (Pt 1):57–68.PubMedCrossRefGoogle Scholar
  78. 78.
    Munnich A, Rotig A, Chretien D, Saudubray JM, Cormier V, Rustin P. Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur J Pediatr. Apr 1996;155(4):262–74.PubMedCrossRefGoogle Scholar
  79. 79.
    Debray FG, Lambert M, Chevalier I, et al. Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics. Apr 2007;119(4):722–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesState University of New York – Upstate Medical UniversitySyracuseUSA

Personalised recommendations