Skip to main content

Bioavailability of Xenobiotics in the Soil Environment

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Abstract

When synthetic, xenobiotic compounds such as agrochemicals and industrial chemicals are utilized, they eventually reach the soil environment where they are subject to degradation, leaching, volatilization, sorption, and uptake by organisms. The simplest assumption is that such chemicals in soil are totally available to microorganisms, plant roots, and soil fauna via direct, contact exposure; subsequently these organisms are consumed as part of food web processes and bioaccumulation may occur, increasing exposures to higher organisms up the food chain. However, studies in the last two decades have revealed that chemical residues in the environment are not completely bioavailable, so that their uptake by biota is less than the total amount present in soil (Alexander 1995; Gevao et al. 2003; Paine et al. 1996). Therefore, the toxicity, biodegradability, and efficacy of xenobiotics are dependent on their soil bioavailability, rendering this concept profoundly important to chemical risk assessment and pesticide registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Kookana RS, Megharaj M, Alston AM (2004) Aging reduces the bioavailability of even a weakly sorbed pesticide (carbaryl) in soil. Environ Toxicol Chem 23: 2084–2089.

    Article  CAS  Google Scholar 

  • Ahtiainen JH, Vanhala P, Myllymaki A (2003) Effects of different plant protection programs on soil microbes. Ecotoxicol Environ Saf 54: 56–64.

    Article  CAS  Google Scholar 

  • Aitchison EW, Kelley SL, Schnoor JL (2000) Phytoremediation of 1,4-dioxane by hybrid Poplar trees. Water Environ Res 72: 313–321.

    Article  CAS  Google Scholar 

  • Alam S, Kamei S, Kawai S (2001) Effects of excess manganese and metal chelators on micronutrient concentrations in the xylem sap of iron-deficient barley plants. Soil Sci Plant Nutr 47: 665–674.

    CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, CA, pp. 302.

    Google Scholar 

  • Alexander M (1995) How toxic are toxic chemicals in soil?. Environ Sci Technol 29: 2713–2717.

    Article  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34: 4259–4265.

    Article  CAS  Google Scholar 

  • Alexander RR, Alexander M (1999) Genotoxicity of two polycyclic aromatic hydrocarbons declines as they age in soil. Environ Toxicol Chem 18: 1140–1143.

    Article  CAS  Google Scholar 

  • Alexander RR, Alexander M (2000) Bioavailability of genotoxic compounds in soils. Environ Sci Technol 34: 1589–1593.

    Article  CAS  Google Scholar 

  • Alexander RR, Chung N, Alexander M (1999) Solid-phase genotoxicity assay for organic compounds in soil. Environ Toxicol Chem 18: 420–425.

    Article  CAS  Google Scholar 

  • Allan IJ, Semple KT, Hare R, Reid BJ (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ Pollut 144: 562–571.

    Article  CAS  Google Scholar 

  • Almeida CMR, Mucha AP, Vasconcelos MTSD (2005) The role of a salt marsh plant on trace metal bioavailability in sediments – Estimation by different chemical approaches. Environ Sci Pollut Res Int 12: 271–277.

    Article  CAS  Google Scholar 

  • Alva AK, Singh M (1991) Sorption-desorption of herbicides in soil as influenced by electrolyte cations and ionic strength. J Environ Sci Health B-Pestic Contam Agric Wastes 26: 147–164.

    Google Scholar 

  • Amdur MO, Doull J, Klasses CD (1993) Toxicology, the basic science of poisons. 4th ed, McGraw-Hill, Inc., New York, pp. 1033.

    Google Scholar 

  • Amir S, Hafidi M, Merlina G, Revel JC (2005) Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 59: 801–810.

    Article  CAS  Google Scholar 

  • Anderson WC, Loehr RC, Smith BP, (eds) (1999) Environmental availability of chlorinated organics, explosives, and metals in soils. American Academy of Environmental Engineers. Annapolis, MD, pp. 210.

    Google Scholar 

  • Anhalt JC, Arthur EL, Anderson TA, Coats JR (2000) Degradation of atrazine, metolachlor, and pendimethalin in pesticide-contaminated soils: Effects of aged residues on soil respiration and plant survival. J Environ Sci Health B-Pestic Contam Agric Wastes B 35: 417–438.

    CAS  Google Scholar 

  • Aronstein BN, Alexander M (1992) Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of quifer sands and soil slurries. Environ Toxicol Chem 11: 1227–1233.

    Article  CAS  Google Scholar 

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentration on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25: 1728–1731.

    Article  CAS  Google Scholar 

  • Audry S, Blanc G, Schafer J (2006) Solid state partitioning of trace metals in suspended particulate matter from a river system affected by smelting-waste drainage. Sci Total Environ 363: 216–236.

    Article  CAS  Google Scholar 

  • Banat IM (1995) Characterization of biosurfactants and their use in pollution removal: State of the Art (Review). Acta Biotechnol 15: 251–267.

    Article  CAS  Google Scholar 

  • Barriuso E, Koskinen WC (1996) Incorporating nonextractable atrazine residues into soil size fractions as a function of time. Soil Sci Soc Am J 60: 150–157.

    Article  CAS  Google Scholar 

  • Barriuso E, Koskinen WC, Sadowsky MJ (2004) Solvent extraction characterization of bioavailability of atrazine residues in soils. J Agric Food Chem 52: 6552–6556.

    Article  CAS  Google Scholar 

  • Baughman TA, Shaw DR (1996) Effect of wetting/drying cycles on dissipation patterns of bioavailable imazaquin. Weed Sci 44: 380–382.

    CAS  Google Scholar 

  • Beckles DM, Chen W, Hughes JB (2007) Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: Microbial study and model prediction. Environ Toxicol Chem 26: 878–883.

    Article  CAS  Google Scholar 

  • Beigel C, Charnay M-P, Barriuso E (1999) Degradation of formulated and unformulated triticonazole fungicide in soil: Effect of application rate. Soil Biol Biochem 31: 525–534.

    Article  CAS  Google Scholar 

  • Bejarano AC, Decho AW, Chandler GT (2005) The role of various dissolved organic matter forms on chlorpyrifos bioavailability to the estuarine bivalve Mercenaria mercenaria. Mar Environ Res 60: 111–130.

    Article  CAS  Google Scholar 

  • Belfroid A, Sikkenk M, van Gestel K, Seinen W, Hermens J (1994) The toxicokinetic behavior of chlorobenzenes in earthworms (Eisenia andrei), experiments in soil. Environ Toxicol Chem 13: 93–99.

    CAS  Google Scholar 

  • Benoit P, Barriuso E, Soulas G (1999) Degradation of 2,4-D, 2,4-dichlorophenol, and 4-chlorophenol in soil after sorption on humified and nonhumified organic matter. J Environ Qual 28: 1127–1135.

    Article  CAS  Google Scholar 

  • Bergknut M, Sehlin E, Lundstedt S, Andersson PL, Haglund P, Tysklind M (2007) Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ Pollut 145: 154–160.

    Article  CAS  Google Scholar 

  • Berglof T, Koskinen WC, Brucher J, Kylin H (2000a) Linuron sorption-desorption in field-moist soils. J Agric Food Chem 48: 3718–3721.

    Article  CAS  Google Scholar 

  • Berglof T, Koskinen WC, Kylin H, Moorman TB (2000b) Characterization of triadimefon sorption in soils using supercritical fluid (SFE) and accelerated solvent (ASE) extraction techniques. Pest Manag Sci 56: 927–931.

    Article  CAS  Google Scholar 

  • Bernards ML, Jolley VD, Stevens WB, Hergert GW (2002) Phytosiderophore release from nodal, primary, and complete root systems in maize. Plant Soil 241: 105–113.

    Article  CAS  Google Scholar 

  • Beyer W, Gish C (1980) Persistence in earthworms and potential hazards to birds of soil-applied DDT, dieldrin and heptachlor. J Appl Ecol 17: 295–307.

    Article  CAS  Google Scholar 

  • Billeret M, Berny P, Mazallon M, Buronfosse T (2000) Bioavailability of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in rats from naturally contaminated soils: Preliminary evaluation of the influence of soil parameters. Environ Toxicol Chem 19: 2614–2620.

    CAS  Google Scholar 

  • Billingsley KA, Backus SM, Ward OP (1999) Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Appl Microbiol Biotechnol 52: 255–260.

    Article  CAS  Google Scholar 

  • Blanco HG, Matallo MB, Blanco FMG (1994) Soil persistence of cyanazine under field conditions in the humid tropics. Pesquisa Agropecuaria Brasileira 29: 397–400.

    Google Scholar 

  • Boersma L, Lindstrom FT, Childs SW (1991) Model for steady state coupled transport in xylem and phloem. Agronomy J 83: 401–415.

    Article  Google Scholar 

  • Boersma L, MacFarlane C, McCoy EL (1988) Uptake of organic chemicals by plants. Soil Sci 146: 403–417.

    Article  CAS  Google Scholar 

  • Boesten JJTI, van der Linden AMA (1991) Modeling the influence of sorption and transformation on pesticide leaching and persistence. J Environ Qual 20: 425–435.

    Article  CAS  Google Scholar 

  • Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59: 1927–1930.

    CAS  Google Scholar 

  • Bollag J-M (1992) Decontaminating soil with enzyme. Environ Sci Technol 26: 1876–1881.

    Article  CAS  Google Scholar 

  • Bollag J-M, Minard RD, Liu S-Y (1983) Cross-Linkage between anilines and phenolic humus constituents. Environ Sci Technol 17: 72–80.

    Article  CAS  Google Scholar 

  • Bordelon NR, Donnelly KC, King LC, Wolf DC, Reeves WR, George SE (2000) Bioavailability of the genotoxic components in coal tar contaminated soils in Fischer 344 rats. Toxicol Sci 56: 37–48.

    Article  CAS  Google Scholar 

  • Braida WJ, White JC, Pignatello JJ (2004) Indices for bioavailability and biotransformation potential of contaminants in soils. Environ Toxicol Chem 23: 1585–1591.

    Article  CAS  Google Scholar 

  • Brandt KK, Hesselsoe M, Roslev P, Henriksen K, Sorensen J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67: 2489–2498.

    Article  CAS  Google Scholar 

  • Breedveld GD, Sparrevik M (2000) Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegrad 11: 391–399.

    Article  CAS  Google Scholar 

  • Bresnahan GA, Koskinen WC, Dexter AG, Lueschen WE (2000) Influence of soil pH-sorption interactions on imazethapyr carry-over. J Agric Food Chem 48: 1929–1934.

    Article  CAS  Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubility, bioconcentration factors, and the parachor. J Agric Food Chem 29: 1050.

    Article  CAS  Google Scholar 

  • Briggs GG, Bomilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-inoized chemicals. Pest Sci 13: 495–504.

    Article  CAS  Google Scholar 

  • Briggs GG, Lord KA (1983) The distribution of aldicarb and its metabolites between Lumbricus terrestris, water and soil. Pest Sci 14: 412–416.

    Article  CAS  Google Scholar 

  • Briggs GG, Rigitano RL, Bromilow RH (1987) Physicochemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pest Sci 19: 101.

    Article  CAS  Google Scholar 

  • Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms. 7th Ed., Prentice-Hall, London, 909 pp.

    Google Scholar 

  • Brohon B, Gourdon R (2000) Influence of soil microbial activity level on the determination of contaminated soil toxicity using Lumistox and MetPlate bioassays. Soil Biol Biochem 32: 853–857.

    Article  CAS  Google Scholar 

  • Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, McFarlane JC (eds) Plant contamination: Modeling and simulation of organic chemical processes. Lewis Publishers, Boca Raton, FL, pp 37–68.

    Google Scholar 

  • Brouwer H, Murphy T, McArdle L (1990) A sediment-contact bioassay with Photobacterium phosphoreum. Environ Toxicol Chem 9: 1353–1358.

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright DS, Aust AD (1985) Oxidation of persistent environmental pollutants by white rot fungus. Science 228: 1434–1436.

    Article  CAS  Google Scholar 

  • Burns RG (2001) Degradation of xenobiotics: Soil surfaces and biofilms and their relevance to bioavailability and bioremediation. The Royal Society of Chemistry, Environmental Chemistry Group Newletter Issue No.14, June 3–8.

    Google Scholar 

  • Calvillo YM, Alexander M (1996) Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45: 383–390.

    Article  CAS  Google Scholar 

  • Carrizosa MJ, Calderon MJ, Hermosin MC, Cornejo J (2000) Organosmectites as sorbent and carrier of the herbicide bentazone. Sci Total Environ 247: 285–293.

    Article  CAS  Google Scholar 

  • Celis R, Cornejo J, Hermosin MC, Koskinen WC (1997) Sorption-desorption of atrazine and simazine by model soil colloidal components. Soil Sci Soc Am J 61: 436–443.

    Article  CAS  Google Scholar 

  • Celis R, Koskinen WC (1999a) Characterization of pesticide desorption from soil by the isotopic exchange technique. Soil Sci Soc Am J 63: 1659–1666.

    Article  CAS  Google Scholar 

  • Celis R, Koskinen WC (1999b) An isotopic exchange method for the characterization of the irreversibility of pesticide sorption-desorption in soil. J Agric Food Chem 47: 782–790.

    Article  CAS  Google Scholar 

  • Chaignon V, Di MD, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated vineyard soil. New Phytol 154: 121–130.

    Article  CAS  Google Scholar 

  • Charrois JWA, McGill WB, Froese KL (2001) Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: A survival-based approach. Environ Toxicol Chem 20: 2594–2603.

    CAS  Google Scholar 

  • Chiou CT (1990) Roles of organic matter, minerals, and moisture in sorption of non-ionic compounds and pesticides by soil. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences, Selected readings. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 111–160.

    Google Scholar 

  • Chung N, Alexander M (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol 32: 855–860.

    Article  CAS  Google Scholar 

  • Chung N, Alexander M (1999) Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons. Environ Sci Technol 33: 3605–3608.

    Article  CAS  Google Scholar 

  • Cleveland CB (1996) Mobility assessment of agrichemicals: Current laboratory methodology and suggestions for future directions. Weed Technol 10: 157–168.

    CAS  Google Scholar 

  • Connaughton DF, Stedlnger JR, Llon LW, Shuler ML (1993) Description of time-varying desorption kinetics: Release of naphthalene from contaminated soils. Environ Sci Technol 27: 2397–2403.

    Article  CAS  Google Scholar 

  • Connell DW, Miller GJ (1984) Chemistry and Ecotoxicology of pollution. John Wiley & Sons, New York, 444 pp.

    Google Scholar 

  • Cox L, Koskinen WC, Celis R, Yen PY, Hermosin MC, Cornejo J (1998) Sorption of imidacloprid on soil clay mineral and organic components. Soil Sci Soc Am J 62: 911–915.

    Article  CAS  Google Scholar 

  • Cox L, Koskinen WC, Yen PY (1997) Sorption-desorption of imidacloprid and its metabolites in soils. J Agric Food Chem 45: 1468–1472.

    Article  CAS  Google Scholar 

  • Custer TW, Sparks DW, Sobiech SA, Hines RK, Melancon MJ (1996) Organochlorine accumulation by sentinel mallards at the Winston-Thomas sewage treatment plant, Bloomington, Indiana. Arch Environ Contam Toxicol 30: 163–169.

    Article  CAS  Google Scholar 

  • Cuypers C, Clemens R, Grotenhuis T, Rulkens W (2001) Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments. Soil Sediment Contam 10: 459–482.

    Article  CAS  Google Scholar 

  • Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34: 2057–2063.

    Article  CAS  Google Scholar 

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46: 1235–1245.

    Article  CAS  Google Scholar 

  • Davis B (1971) Laboratory studies on the uptake of dieldrin and DDT by earthworms. Soil Biol Biochem 3: 221–233.

    Article  CAS  Google Scholar 

  • de Vaufleury AG, Bispo A (2000) Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. Environ Sci Technol 34: 1865–1870.

    Article  CAS  Google Scholar 

  • Dean JR, Scott WC (2004) Recent developments in assessing the bioavailability of persistent organic pollutants in the environment. Trend Anal Chem 23: 609–618.

    Article  CAS  Google Scholar 

  • Dec J, Bollag J-M (1997) Determination of covalent and non-covalent binding interactions between xenobiotic chemicals and soil. Soil Sci 162: 858–874.

    Article  CAS  Google Scholar 

  • Dercova K, Makovnikova J, Barancikova G, Zuffa J (2005) Bioremediation of soil and wastewater contaminated with toxic metals. Chem Listy 99: 682–693.

    CAS  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for noninoic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10: 1541–1583.

    Article  CAS  Google Scholar 

  • Dixon PL, McKinley RG (1992) Pitfall trap catches of and aphid predation by Pterostichus melanarius and Pterostichus madius in insecticide treated and untreated potatoes. Entomol Exp Appl 64: 63–72.

    Article  Google Scholar 

  • Djomo JE, Dauta A, Ferrier V, Narbonne JF, Monkiedje A, Njine T and Garrigues P (2004) Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus. Water Res 38: 1817–1821.

    Article  CAS  Google Scholar 

  • Doick KJ, Clasper PJ, Urmann K, Semple KT (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ Pollut 144: 345–354.

    Article  CAS  Google Scholar 

  • Doick KJ, Dew NM, Semple KT (2005) Linking catabolism to cyclodextrin extractability: Determination of the microbial availability of PAHs in soil. Environ Sci Technol 39: 8858–8864.

    Article  CAS  Google Scholar 

  • Dorn PB, Salantro JP, Evans SH, Kravetz L (1993) Assessing the aquatic hazard of some branched and linear nonionic surfactants by biodegradation and toxicity. Environ Toxicol Chem 12: 1751–1762.

    Article  CAS  Google Scholar 

  • D‘Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: A review. J Environ Qual 34: 1707–1745.

    Article  CAS  Google Scholar 

  • Edwards DA, Adeel Z, Luthy RG (1994) Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ Sci Technol 28: 1550–1560.

    Article  CAS  Google Scholar 

  • Edwards C, Jeff K (1974) Rate of uptake of DDT from soil by earthworms. Nature 247: 157–158.

    Article  CAS  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37: 295A–302A.

    Article  CAS  Google Scholar 

  • Eijsackers H (1994) Ecotoxicology of soil organisms: Seeking the way in a pitch-dark labyrinth. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of soil organisms. CRC Press, Inc., Boca Raton, FL, pp. 3–32.

    Google Scholar 

  • El-Shatnawi MKJ, Makhadmeh IM (2001) Ecophysiology of the plant-rhizosphere system. J Agron Crop Sci 187: 1–9.

    Article  Google Scholar 

  • Farenhorst A, Topp E, Bowman BT, Tomlin AD (2000) Earthworm burrowing and feeding activity and the potential for atrazine transport by preferential flow. Soil Biol Biochem 32: 479–488.

    Article  CAS  Google Scholar 

  • Fava F, Berselli S, Conte P, Piccolo A, Marchetti L (2004) Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol Bioeng 88: 214–223.

    Article  CAS  Google Scholar 

  • Fava F, Bertin L, Fedi S, Zannoni D (2003) Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotech Bioeng 81: 381–390.

    Article  CAS  Google Scholar 

  • Fava F, Di GD (2001) Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil. Biotechnol Bioeng 72: 177–184.

    Article  CAS  Google Scholar 

  • Fava F, Piccolo A (2002) Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnol Bioeng 77: 204–211.

    Article  CAS  Google Scholar 

  • Felsot AS, Lew A (1989) Factors affecting bioactivity of soil insecticides: Relationships among uptake, desorption, and toxicity of carbofuran and terbufos. J Econ Entomol 82: 389–395.

    CAS  Google Scholar 

  • Feng YC, Park JH, Voice TC, Boyd SA (2000) Bioavailability of soil sorbed biphenyl to bacteria. Environ Sci Technol 34: 1977–1984.

    Article  CAS  Google Scholar 

  • Fetter CW (1999) Contaminant hydrology. Second edition, Prentice-Hall Inc., Upper Saddle River, NJ, 500 pp.

    Google Scholar 

  • Figueira A, Kido EA, Almeida RS (2001) Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators. Genetics Molecul Biol 24: 207–220.

    CAS  Google Scholar 

  • Fontaine DD, Lehmann RG, Miller JR (1991) Soil adsorption of neutral and anionic forms of a sulfonamide herbicide, flumetsulam. J Environ Qual 20: 759–762.

    Article  CAS  Google Scholar 

  • Fouchecourt MO, Arnold M, Berny P, Videmann B, Rether B, Riviere JL (1999) Assessment of the bioavailability of PAHs in rats exposed to a polluted soil by natural routes: Induction of EROD activity and DNA adducts and PAH burden in both liver and lung. Environ Res 80: 330–339.

    Article  CAS  Google Scholar 

  • Fujimura Y, Katayama A (1997) Estimation of DDT availability to a DDT-degrading bacterium in soil by a direct extraction method of bacterial cells. Chemosphere 35: 335–341.

    Article  CAS  Google Scholar 

  • Fujimura Y, Kuwatsuka S, Katayama A (1995) Bioavailability and biodegradation rate of DDT by Bacillus sp. B75 in the presence of dissolved humic substances. Soil Sci Plant Nutr 42: 375–381.

    Google Scholar 

  • Garcia Blanco H, Barifouse Matallo M, Garcia Blanco FM (1994) Soil persistence of cyanazine under field conditions in humid tropic. Pesq Agrop Bras 29: 397–400.

    Google Scholar 

  • Gayler S, Trapp S, Matthies M, Schroll R, Behrendt H (1995) Uptake of terbuthylazine and its medium polar metabolites into maize plants. Environ Sci Pollut Res 2: 98–103.

    Article  CAS  Google Scholar 

  • Geller A (1979) Sorption and desorption of atrazine by three bacterial species isolated from aquatic systems. Arch Environ Contam Toxicol 8: 713–720.

    Article  CAS  Google Scholar 

  • Gevao B, Jones K, Semple K, Craven A, Burauel P (2003) Nonextractable pesticide residues in soil. Environ Sci Technol 37: 138A–143A.

    Article  CAS  Google Scholar 

  • Gevao B, Mordaunt C, Semple KT, Piearce TG, Jones KC (2001) Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environ Sci Technol 35: 501–507.

    Article  CAS  Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: A review. Environ Pollut 108: 3–14.

    Article  CAS  Google Scholar 

  • Ghoshal S, Luthy RG (1996) Bioavailability of hydrophobic organic compounds from nonaqueous-phase liquids: The biodegradation of naphthalene from coal tar. Environ Toxicol Chem 15: 1894–1900.

    Article  Google Scholar 

  • Ghoshal S, Ramaswami A, Luthy RG (1996) Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch systems. Environ Sci Technol 30: 1282–1291.

    Article  CAS  Google Scholar 

  • Godskesen B, Holm PE, Jacobsen OS, Jacobsen CS (2005) Aging of triazine amine in soils demonstrated through sorption, desorption, and bioavailability measurements. Environ Toxicol Chem 24: 510–516.

    Article  CAS  Google Scholar 

  • Gold RE, Howell HN Jr., Pawson BM, Wright MS, Lutz JC (1996) Persistence and bioavailability of termiticides to subterranean termites (Isoptera:Rhinotermitidae) from five soil types and locations in Texas. Sociobiol 28: 337–364.

    Google Scholar 

  • Gong P, Siciliano SD, Greer CW, Paquet L, Hawari J, Sunahara GI (1999) Effects and bioavailability of 2,4,6-trinitrotoluene in spiked and field-contaminated soils to indigenous microorganisms. Environ Toxicol Chem 18: 2681–2688.

    Article  CAS  Google Scholar 

  • Green RE (1974) Pesticide-clay-water interactions. In: Guenzi WD (ed) Pesticides in soil and water. Soil Sceince Society of America, Inc., Madison, WI, pp. 3–38.

    Google Scholar 

  • Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16: 667–674.

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58: 1142–1152.

    CAS  Google Scholar 

  • Guerin WF, Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54: 937–944.

    CAS  Google Scholar 

  • Guerrero NRV, Taylor MG, Wider EA, Simkiss K (2003) Influence of particle characteristics and organic matter content on the bioavailability and bioaccumulation of pyrene by clams. Environ Pollut 121: 115–122.

    Article  Google Scholar 

  • Guetzloff TF, Rice JA (1994) Does humic form a micelle?. Sci Total Environ 152: 31–35.

    Article  CAS  Google Scholar 

  • Guha S, Jaffe PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32: 2317–2324.

    Article  CAS  Google Scholar 

  • Gunkel J, Ronnpagel K, Ahlf W (1993) Suitability of microbial bioassays for bound contaminants. Acta Hydrochimica et Hydrobiologica 21: 215–220.

    Article  CAS  Google Scholar 

  • Guo L, Bicki TJ, Felsot AS, Hinesly TD (1991) Phytotoxicity of atrazine and alachlor in soil amended with sludge, manure and activated carbon. J Environ Sci Health B 16: 513–527.

    Article  Google Scholar 

  • Gyldenkaerne S, Joergensen SE (2000) Modelling the bioavailability of pesticides to soil-dwelling organisms. Ecol Model 132: 203–230.

    Article  CAS  Google Scholar 

  • Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele JP (1999) Ecotoxicological assessment of soils of former manufactured gas plant sites: Bioremediation potential and pollution mobility. Environ Sci Technol 33: 4379–4383.

    Article  CAS  Google Scholar 

  • Hallgren P, Westbom R, Nilsson T, Sporring S, Bjorklund E (2006) Measuring bioavailability of polychlorinated biphenyls in soil to earthworms using selective supercritical fluid extraction. Chemosphere 63: 1532–1538.

    Article  CAS  Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitations of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18: 97–105.

    Article  CAS  Google Scholar 

  • Harmsen J, Rulkens WH, Sims RC, Rijtema PE, Zweers AJ (2007) Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments; Beneficial reuse. J Environ Qual 36: 1112–1122.

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1997) Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles. Environ Toxicol Chem 16: 2215–2221.

    Article  CAS  Google Scholar 

  • Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34: 4103–4110.

    Article  CAS  Google Scholar 

  • Hawthorne SB, Lanno R, Kreitinger JP (2005) Reduction in acute toxicity of soils to terrestrial oligochaetes following the removal of bioavailable polycyclic aromatic hydrocarbons with mild supercritical carbon dioxide extraction. Environ Toxicol Chem 24: 1893–1895.

    Article  CAS  Google Scholar 

  • Heida H, Olie K, Prins E (1986) Selective accumulation of chlorobenzenes, polychlorinated dibenzofurans and 2,3,7,8-TCDD in wildlife of the Volgermeerpolder, Amsterdam, Holland. Chemosphere 15: 1995–2000.

    Article  CAS  Google Scholar 

  • Hendriks AJ, Ma W-C, Brouns JJ, de Ruiter-Dijkman EM, Gast R (1995) Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains. Arch Environ Contam Toxicol 29: 115–127.

    Article  CAS  Google Scholar 

  • Hesselsoe M, Brandt KK, Sorensen J (2001) Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH). FEMS Microbiol Ecol 38: 87–95.

    CAS  Google Scholar 

  • Hickman ZA, Reid BJ (2005) Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ Pollut 138: 299–306.

    Article  CAS  Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28: 367–376.

    CAS  Google Scholar 

  • Hu X-Y, Wen B, Shan X-Q, Zhang S-Z (2005a) Bioavailability of pentachlorophenol to earthworms (Eisenia fetida) in artificially contaminated soils. J Environ Sci Health A 40: 1905–1916.

    CAS  Google Scholar 

  • Hu XY, Wen B, Zhang SZ, Shan XQ (2005b) Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Ecotoxicol Environ Saf 62: 26–34.

    Article  CAS  Google Scholar 

  • Hund K (1997) Algal growth inhibition test – feasibility and limitations for soil assessment. Chemosphere 35: 1069–1082.

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Koerdel W (2003) Underlying issues in bioaccessibility and bioavailability: Experimental methods. Ecotoxicol Environ Saf 56: 52–62.

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2005) Terrestrial ecotoxicity of eight chemicals in a systematic approach. J Soils Sediments 5: 59–65.

    Article  CAS  Google Scholar 

  • ISO/DIS15685 (2001) Soil quality – Determination of potential nitrification – Rapid test by ammonium oxidation.

    Google Scholar 

  • ISO11267 (1999) Soil quality – Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants.

    Google Scholar 

  • ISO11268-1 (1993) Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 1: Determination of acute toxicity using artificial soil substrate.

    Google Scholar 

  • ISO11268-2 (1998) Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 2: Determination of effects on reproduction.

    Google Scholar 

  • ISO11268-3 (1999) Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 3: Guidance on the determination of effects in field situations.

    Google Scholar 

  • ISO11269-1 (1993) Soil quality – Determination of the effects of pollutants on soil flora – Part 1: Method for the measurement of inhibition of root growth.

    Google Scholar 

  • ISO11269-2 (1995) Soil quality – Determination of the effects of pollutants on soil flora – Part 2: Effects of chemicals on the emergence and growth of higher plants.

    Google Scholar 

  • ISO11348-1 (1998) Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 1: Method using freshly prepared bacteria.

    Google Scholar 

  • ISO14238 (1997) Soil quality – Biological methods – Determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes.

    Google Scholar 

  • ISO14240-1 (1997) Soil quality – Determination of soil microbial biomass – Part 1: Substrate-induced respiration method.

    Google Scholar 

  • ISO14240-2 (1997) Soil quality – Determination of soil microbial biomass – Part 2: Fumigation-extraction method.

    Google Scholar 

  • ISO17155 (1997) Soil quality – Determination of abundance and activity of soil microflora using respiration curves.

    Google Scholar 

  • Iannacone J, Gutierrez A (1999) Ecotoxicity of agrochemicals lindane and chlorpyrifos on the nematode Panagrellus, the microalgae Chlorella and the Allium test. Agricultura Tecnica Santiago 2: 85–95.

    Google Scholar 

  • Intawongse M, Dean JR (2006) In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trac-Trends Anal Chem 25: 876–886.

    Article  CAS  Google Scholar 

  • Jacobsen CS, Shapir N, Jensen LO, Jensen EH, Juhler RK, Streibig JC, Mandelbaum RT, Helweg A (2001) Bioavailability of triazine herbicides in a sandy soil profile. Biol Fertil Soils 33: 501–506.

    Article  CAS  Google Scholar 

  • Jager T, Van der Wal L, Fleuren RHLJ, Barendregt A, Hermens JLM (2005) Bioaccumulation of organic chemicals in contaminated soils: Evaluation of bioassays with earthworms. Environ Sci Technol 39: 293–298.

    Article  CAS  Google Scholar 

  • Jin Z, Simkins S, Xing B (1999) Bioavailability of freshly added and aged naphthalene in soils under gastric pH conditions. Environ Toxicol Chem 18: 2751–2758.

    Article  CAS  Google Scholar 

  • Johnson RM, Sims JT (1993) Influence of surface and subsoil properties on herbicide sorption by atlantic coastal plain soils. Soil Sci 155: 339–348.

    Article  CAS  Google Scholar 

  • Junnila S, Heinonen-Tanski H, Ervio LR, Laitinen P (1994) Phytotoxic persistence and microbial effects of chlorsulfuron and metsulfuron in Finnish soils. Weed Res 34: 413–423.

    Article  CAS  Google Scholar 

  • Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J and Lehtokari M (2000) A battery of toxicity tests as indicators of decontamination in composting oily waste. Ecotoxicol Environ Saf 47: 156–166.

    Article  CAS  Google Scholar 

  • Kah M, Brown CD (2007) Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68: 1335–1343.

    Article  CAS  Google Scholar 

  • Kan ATK, Fu G, Tomson MB (1994) Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction. Environ Sci Technol 28: 859–867.</Journal>

    Article  CAS  Google Scholar 

  • Karimi-Lotfabad S, Pickard MA, Gray MR (1996) Reactions of polynuclear aromatic hydrocarbons on soil. Environ Sci Technol 30: 1145–1151.

    Article  CAS  Google Scholar 

  • Karpouzas D, Giannakou IO, Walker A, Gowen SR (1999) Reduction in biological efficacy of ethoprophos in a soil from Greece due to enhanced biodegradation: Comparing bioassay with laboratory incubation data. Pest Sci 55: 1089–1094.

    Article  CAS  Google Scholar 

  • Katayama A, Fujimura Y, Kuwatsuka S (1993) Microbial degradation of DDT at extremely low concentrations. J Pest Sci 18: 353–359.

    CAS  Google Scholar 

  • Kelsey JW, Alexander M (1997) Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ Toxicol Chem 16: 582–585.

    Article  CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31: 214–217.

    Article  CAS  Google Scholar 

  • Khan SU (1982) Bound pesticide residues in soil and plants. Residue Rev 84: 1–25.

    CAS  Google Scholar 

  • Khan SU (1991) Bound residues. In: Grover R, Cessna AJ (eds.) Environmental chemistry of herbicides, Vol. 2. CRC, Boca Raton, FL, pp. 265–279.

    Google Scholar 

  • Khan SU, Behki RM (1990) Effects of Pseudomonas species on the release of bound 14C residues from soils previously treated with [14C]atrazine. J Agric Food Chem 38: 2090–2093.

    Article  CAS  Google Scholar 

  • King JMH, DiGrazia PM, Applegate BM, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249: 778–781.

    Article  CAS  Google Scholar 

  • Knightes CD, Peters CA (2003) Aqueous Phase Biodegradation Kinetics of 10 PAH compounds. Environ Engineer Sci 20: 207–218.

    Article  CAS  Google Scholar 

  • Knuutinen J, Palm H, Hakata H, Haimi J, Huhta V, Salminen J (1990) Polychlorinated phenols and their metabolites in soil and earthworms of sawmill environment. Chemosphere 20: 609–623.

    Article  CAS  Google Scholar 

  • Koch AL (1990) Diffusion: The crucial process in many aspects of biology of bacteria. Adv Microbiol Ecol 11: 37–69.

    Google Scholar 

  • Koehler H, Warrelmann J, Frische T, Behrend P, Walter U (2002) In-situ phytoremediation of TNT-contaminated soil. Acta Biotechnol 22: 67–80.

    Article  CAS  Google Scholar 

  • Kohl SD, Rice JA (1998) The binding of contaminants to humin: A mass balance. Chemosphere 36: 251–261.

    Article  CAS  Google Scholar 

  • Kong MS, Ma TH (1999) Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mutat Res Fundam Mol Mech of Mutagen 426: 221–228.

    Article  CAS  Google Scholar 

  • Kookana RS, Gerritse RG, Aylmore LAG (1990) Effects of organic cosolvent on adsorption and desorption of linuron and simazine in soil. Soil Sci 154: 344–349.

    Article  Google Scholar 

  • Koskinen WC, Cox L, Yen PY (2001) Changes in sorption/bioavailability of imidacloprid metabolites in soil with incubation time. Biol Fertil Soils 33: 546–550.

    Article  CAS  Google Scholar 

  • Krauss M, Wilcke W, Zech W (2000) Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environ Sci Technol 34: 4335–4340.

    Article  CAS  Google Scholar 

  • Kreitinger JP, Neuhauser EF, Doherty FG, Hawthorne SB (2007a) Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites. Environ Toxicol Chem 26: 1146–1157.

    Article  CAS  Google Scholar 

  • Kreitinger JP, Quinones-Rivera A, Neuhauser EF, Alexander M, Hawthorne SB (2007b) Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. Environ Toxicol Chem 26: 1809–1817.

    Article  CAS  Google Scholar 

  • Krogh PH, Henriksen K and Jacobsen CS (2003) Organic contaminants in soil. Environ Toxicol Chem 22: 691–691.

    Article  CAS  Google Scholar 

  • Kuperman R, Simini GM, Phillips CT, Checkai RT, Diaz-Cosin DJ (1999) Comparison of malathion toxicity using enchytraeid reproduction test and eathworm toxicity test in different soil types. Pedobiologia 43: 630–634.

    CAS  Google Scholar 

  • Laha S, Luthy RG (1992) Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotech Bioeng 40: 1367–1380.

    Article  CAS  Google Scholar 

  • Lang E, Viedt H, Egestorff J and Hanert HH (1992) Reaction of the soil microflora after contamination with chlorinated aromatc-compounds and HCH. FEMS Microbiol Ecol 86: 275–282.

    Article  CAS  Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57: 39–47.

    Article  CAS  Google Scholar 

  • Lee P-H, Ong SK, Golchin J, Nelson GL (2001) Use of solvents to enhance PAH biodegradation of coal tar-contaminated soils. Water Res 35: 3941–3949.

    Article  CAS  Google Scholar 

  • Leistra M, Matser AM (2004) Adsorption, transformation, and bioavailability of the fungicides carbendazim and iprodione in soil, alone and in combination. J Environ Sci Health B-Pestic Contam Agric Wastes B 39: 1–17.

    Google Scholar 

  • Leland JE, Mullins DE, Berry DF (2001) Evaluating environmental hazards of land applying composted diazinon using earthworm bioassays. J Environ Sci Health Part B-Pestic Contam Agric Wastes B 36: 821–834.

    CAS  Google Scholar 

  • Leroux P, Gredt M (1977) Uptake of systemic fungicides by maize roots. Neth J Plant Pathol 83(Suppl. 1): 51–61.

    Article  Google Scholar 

  • Liebich J, Burauel P, Fuehr F (1999) Microbial release and degradation of nonextractable anilazine residues. J Agric Food Chem 47: 3905–3910.

    Article  CAS  Google Scholar 

  • Lindstrom FT, Boersma L, McFarlane C (1991) Mathematical model of plant uptake and translocation of organic chemicals: Development of the model. J Environ Qual 20: 129–136.

    Article  CAS  Google Scholar 

  • Liste H-H, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40: 11–14.

    Article  CAS  Google Scholar 

  • Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61: 145–151.

    CAS  Google Scholar 

  • Liu L, Tindall JA, Friedel MJ (2007a) Biodegradation of PAHs and PCBs in soils and sludges. Water Air Soil Pollut 181: 281–296.

    Article  CAS  Google Scholar 

  • Liu L, Tindall JA, Friedel MJ, Zhang WX (2007b) Biodegradation of organic chemicals in soil/water microcosms system: Model development. Water Air Soil Pollut 178: 131–143.

    Article  CAS  Google Scholar 

  • Lock K, De SKAC, Janssen CR (2002) The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42: 217–221.

    Article  CAS  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediat 4: 101–115.

    Article  CAS  Google Scholar 

  • Loehr R (1996) The environmental Impact of Soil Contamination: Bioavailability, Risk Assessment, and Police Implications. Policy Study No. 211 Retrieved Oct. 15, 2008, from http://www.reason.org/ps211.html (Reason Public Policy Institute).

  • Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138: 121–131.

    Article  CAS  Google Scholar 

  • Lovell CR, Bagwell CE, Czako M, Marton L, Piceno YM, Ringelberg DB (2001) Stability of a rhizosphere microbial community exposed to natural and manipulated environmental variability. FEMS Microbiol Ecol 38: 69–76.

    Article  CAS  Google Scholar 

  • Lu X, Reible DD, Fleeger JW, Chai Y (2003) Bioavailability of desorption-resistant phenanthrene to the oligochaete Ilyodrilus templetoni. Environ Toxicol Chem 22: 153–160.

    CAS  Google Scholar 

  • Ma W-C, Van Kleunen A, Immerzeel J, De Maagd PG-J (1998) Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: Assessment of equilibrium partitioning theory in situ studies and water experiments. Environ Toxicol Chem 17: 1730–1737.

    Article  CAS  Google Scholar 

  • Macleod CJA, Semple KT (2000) Influence of contact time on extractability and degradation of pyrene in soils. Environ Sci Technol 34: 4952–4957.

    Article  CAS  Google Scholar 

  • Macur RE, Inskeep WP (1999) Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil. Environ Toxicol Chem 18: 1927–1931.

    Article  CAS  Google Scholar 

  • Maenpaa K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77: 329–338.

    Article  CAS  Google Scholar 

  • Makovnikova J, Barancikova G, Dlapa P, Dercova K (2006) Inorganic contaminants in soil ecosystems. Chem Listy 100: 424–432.

    CAS  Google Scholar 

  • Malik N, Drennan DSH (1989) Adsorption-desorption equilibria of carbon-14 labeled fluridone at low solution concentrations and soil water ratios. Can J Soil Sci 69: 567–578.

    Article  CAS  Google Scholar 

  • Martensson AM (1992) Effects of agrochemicals and heavy-metals on fast-growing Rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24: 435–445.

    Article  CAS  Google Scholar 

  • McFarlane JC, Pfleeger T, Fletcher J (1987) Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants. J Environ Qual 16: 372–376.

    Article  CAS  Google Scholar 

  • McGhee I, Sannino F, Gianfreda L, Burns RG (1999) Bioavailability of 2,4-D sorbed to a chlorite-like complex. Chemosphere 39: 285–291.

    Article  CAS  Google Scholar 

  • Megharaj M, Pearson HW and Venkateswarlu K (1992) Effects of phenolic-compounds on growth and metabolic activities of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Plant Soil 140: 25–34.

    Article  CAS  Google Scholar 

  • Meredith CE, Radosevich M (1998) Bacterial degradation of homo- and heterocyclic aromatic compounds in the presence of soluble/colloidal humic acid. J Environ Sci Health B-Pestic Contam Agric Wastes 33: 17–36.

    CAS  Google Scholar 

  • Michel K, Ludwig B (2005) Bioavailability and biogeochemistry of metals in the terrestrial environment. In: Sigel A, Sigel H, Sigel R (eds.) Metal Ions in Biological Systems, Vol. 44, Biogeochemistry, availability, and transport of metals in the environment. Taylor & Francis Ltd., London, pp. 75–96.

    Google Scholar 

  • Mitragotri S (2002) A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on scaled particle theory. J Pharm Sci 91: 744–752.

    Article  CAS  Google Scholar 

  • Moermond CTA, Roozen FCJM, Zwolsman JJG, Koelmans AA (2004) Uptake of sediment-bound bioavailable polychlorobiphenyls by benthivorous carp (Cyprinus carpio). Environ Sci Technol 38: 4503–4509.

    Article  CAS  Google Scholar 

  • Molnar M, Leitgib L, Gruiz K, Fenyvesi E, Szaniszlo N, Szejtli J, Fava F (2005) Enhanced biodegradation of transformer oil in soils with cyclodextrin – from the laboratory to the field. Biodegrad 16: 159–168.

    Article  CAS  Google Scholar 

  • Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ Sci Technol 34: 709–713.

    Article  CAS  Google Scholar 

  • Mullie WC, Everts JW (1991) Uptake and elimination of [14C]deltamethrin by Oedothorax apicatus (Arachnida; Erigoniae) with respect to bioavailability. Pest Biochem Physiol 39: 27–34.

    Article  CAS  Google Scholar 

  • Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability. Tests with model solids. Environ Sci Technol 32: 71–74.

    Article  CAS  Google Scholar 

  • Nam K, Chung N, Alexander M (1998) Relationship between organic matter content of soil and the sequestration of phenanthrene. Environ Sci Technol 32: 3785–3788.

    Article  CAS  Google Scholar 

  • Nash RG (1974) Plant uptake of insecticides, fungicides, and fumigants from soils. In: Guenzi WD (ed) Pesticides in soil and water. Soil Sceince Society of America, Inc., Madison, WI, pp. 257–313.

    Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30: 83–94.

    Article  CAS  Google Scholar 

  • Nikaido H (1993) Transport across the bacterial outer membrane. J Bioener Biomembr 25: 581–589.

    CAS  Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49: 1–32.

    CAS  Google Scholar 

  • Nilsson T, Bjorklund E (2005) Selective supercritical fluid extraction as a tool for determining the PCB fraction accessible for uptake by chironomid larve in a limnic sediment. Chemosphere 60: 141–146.

    Article  CAS  Google Scholar 

  • Nilsson T, Bowadt S, Bjorklund E (2002) Development of a simple selective SFE method for the determination of desorption behaviour of PCBs in two Swedish sediments. Chemosphere 46: 469–476.

    Article  CAS  Google Scholar 

  • Nilsson T, Hakkinen J, Larsson P, Bjorklund E (2006) Selective supercritical fluid extraction to identify aged sediment-bound PCBs available for uptake by eel. Environ Pollut 140: 87–94.

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ Pollut 108: 19–43.

    Article  CAS  Google Scholar 

  • OECD106 (2000) Guidelines for the Testing of Chemicals 106, Adsorption – Desorption Using a Batch Equilibrium Method.

    Google Scholar 

  • OECD207 (1984) Guidelines for the Testing of Chemicals 207, Earthworm, Acute toxicity tests.

    Google Scholar 

  • OECD208 (1984) Guidelines for the Testing of Chemicals 208, Terrestrial plants, growth test.

    Google Scholar 

  • OECD216 (2000) Guidelines for the Testing of Chemicals 216, Soil microorganisms: Nitrogen transformation test.

    Google Scholar 

  • OECD217 (2000) Guidelines for the Testing of Chemicals 217, Soil microorganisms: Carbon transformation test.

    Google Scholar 

  • Oen AMP, Schaanning M, Ruus A, Cornelissen G, Kallqvist T, Breedveld GD (2006) Predicting low biota to sediment accumulation factors of PAHs by using infinite-sink and equilibrium extraction methods as well as BC-inclusive modeling. Chemosphere 64: 1412–1420.

    Article  CAS  Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PS (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49: 582–587.

    CAS  Google Scholar 

  • Oliveira RS, Jr., Koskinen WC, Ferreira FA (2001) Sorption and leaching potential of herbicides on Brazilian soils. Weed Res 41: 97–110.

    Article  CAS  Google Scholar 

  • Oliveira RSJ, Koskinen WC, Werdin NR, Yen PY (2000) Sorption of imidacloprid and its metabolites on tropical soils. J Environ Sci Health B-Pestic Contam Agric Wastes 35: 39–49.

    Google Scholar 

  • Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr 53: 86–94.

    Article  CAS  Google Scholar 

  • Ouyang Y (2002) Phytoremediation: Modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrol 266: 66–82.

    Article  CAS  Google Scholar 

  • Ouyang Y, Shinde D, Ma LQ (2005) Simulation of phytoremediation of a TNT-contaminated soil using the CTSPAC model. J Environ Qual 34: 1490–1496.

    Article  CAS  Google Scholar 

  • Paine MD, Chapman PM, Allard PJ, Murdoch MH, Minifie D (1996) Limited bioavailability of sediment PAH near an aluminum smelter: Contamination does not equal effects. Environ Toxicol Chem 15: 2003–2018.

    Article  CAS  Google Scholar 

  • Papadopoulos A, Paton GI, Reid BJ, Semple KT (2007) Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. J Environ Monitor 9: 516–522.

    Article  CAS  Google Scholar 

  • Park J-W, Dec J, Kim J-E, Bollag J-M (2000) Dehalogenation of xenobiotics as a consequence of binding to humic materials. Arch Environ Contam Toxicol 38: 405–410.

    Article  CAS  Google Scholar 

  • Park J-H, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69: 3288–3298.

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137: 187–197.

    Article  CAS  Google Scholar 

  • Parsons JR, Opperhuizen A, Hutzinger O (1987) Influence of membrane permeation on biodegradation kinetics of hydrophobic compounds. Chemosphere 16: 1361–1370.

    Article  CAS  Google Scholar 

  • Paton GI, Killham K, Weitz HJ, Semple KT (2005) Biological tools for the assessment of contaminated land: Applied soil ecotoxicology. Soil Use Manage 21: 487–499.

    Article  Google Scholar 

  • Pattison AB, Stanton JM, Cobon JA (2000) Bioassay for enhanced biodegradation of nematicides in soil. Australasian Plant Path 29: 52–58.

    Article  Google Scholar 

  • Paul EA, Clark FE (1988) Soil microbiology and biochemistry. Academic Press Inc., San Diego, CA, pp. 198–221.

    Google Scholar 

  • Pavlostathis SG, Jaglal K (1991) Desorptive behavior of trichloroethylene in contaminated soil. Environ Sci Technol 25: 274–279.

    Article  CAS  Google Scholar 

  • Peijnenburg W, Zablotskaja M, Vijver MG (2007) Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol Environ Saf 67: 163–179.

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30: 1–11.

    Article  CAS  Google Scholar 

  • Pinto LJ, Moore MM (2000) Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp. Environ Toxicol Chem 19: 1741–1748.

    CAS  Google Scholar 

  • Pollumaa L, Kahru A, Manusadzianas L (2004) Biotest- and chemistry-based hazard assessment of soils, sediments and solid wastes. J Soils Sediments 4: 267–275.

    Article  CAS  Google Scholar 

  • Prati M, Biganzoli E, Boracchi P, Tesauro M, Monetti C, Bernardini G (2000) Ecotoxicological soil evaluation by FETAX. Chemosphere 41: 1621–1628.

    Article  CAS  Google Scholar 

  • Pritchard PH, Johnes-Meeham J, Mueller JG, Straube W (1999) Bioremediation of high molecular weight PAHs. Application of techniques in bioaugmentation and bioavailability enhancement. In: Fass R, Flashner Y, Reuveny S (eds.) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp. 157–169.

    Google Scholar 

  • Pusino A, Liu W, Fang Z, Gessa C (1993) Effect of metal binding ability on the adsorption of acifluorfen on soil. J Agric Food Chem 41: 502–505.

    Article  CAS  Google Scholar 

  • Racke KD, Lichtenstein EP (1985) Effects of soil microorganisms on the release of bound residues from soils previously treated with [14C] parathion. J Agric Food Chem 33: 939–943.

    Article  Google Scholar 

  • Radosevich M, Traina SJ, Tuovinen OH (1997) Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria. J Environ Qual 26: 206–214.

    Article  CAS  Google Scholar 

  • Ramakrishnan R, Suiter DR, Nakatsu CH, Bennett GW (2000) Feeding inhibition and mortality in Reticulitermes flavipes (Isoptera: Rhinotermitidae) after exposure to imidacloprid-treated soils. J Econ Entomol 93: 422–428.

    Article  CAS  Google Scholar 

  • Ramaswami A, Ghoshal S, Luthy RG (1997) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-Slurry systems. 2. Experimental evaluations. Environ Sci Technol 31: 2268–2276.

    Article  CAS  Google Scholar 

  • Ramaswami A, Luthy RG (1997a) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-Slurry systems: 1. Model development. Environ Sci Technol 31: 2260–2267.

    Article  CAS  Google Scholar 

  • Ramaswami A, Luthy RG (1997b) Measuring and modeling physicochemical limitations to bioavailability and biodegradation. In: Hurst CJ (ed.) Manual of environmental microbiology. ASM Press, Washington, DC, pp. 721–729.

    Google Scholar 

  • Rauret G, López-Sánchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of the new sediment and soil reference materials. J Environ Monitor 1: 57–61.

    Article  CAS  Google Scholar 

  • Reeves WR, McDonald TJ, Bordelon NR, Elizabeth George S, Donnelly KC (2001) Impacts of aging on in vivo and in vitro measurements of soil-bound polycyclic aromatic hydrocarbon availability. Environ Sci Technol 35: 1637–1643.

    Article  CAS  Google Scholar 

  • Regitano JB, Koskinen WC, Sadowsky MJ (2006) Influence of soil aging on sorption and bioavailability of simazine. J Agric Food Chem 54: 1373–1379.

    Article  CAS  Google Scholar 

  • Reid BJ, MacLeod CJA, Lee PH, Morriss AWJ, Stokes JD, Semple KT (2001) A simple 14C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiol Lett 196: 141–146.

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34: 3174–3179.

    Article  CAS  Google Scholar 

  • Ressler BP, Kneifel H, Winter J (1999) Bioavailability of polycyclic aromatic hydrocarbons and formation of humic acid-like residues during bacterial PAH degradation. Appl Microbiol Biotechnol 53: 85–91.

    Article  CAS  Google Scholar 

  • Ribeiro S, Guilhermino L, Sousa JP, Soares AMVM (1999) Novel bioassay based on acetylcholinesterase and lactate dehydrogenase activities to evaluate the toxicity of chemicals to soil isopods. Ecotoxicol Environ Saf 44: 287–293.

    Article  CAS  Google Scholar 

  • Rice PJ, Anderson TA, Coats JR (2004) Effect of sediment on the fate of metolachlor and atrazine in surface water. Environ Toxicol Chem 23: 1145–1155.

    Article  CAS  Google Scholar 

  • Riederer M (1990) Estimating partitioning and transport of organic chemicals in the foliage-atmosphere system discussion of a fugacity-based model. Environ Sci Technol 24: 829–837.

    Article  CAS  Google Scholar 

  • Rieuwerts JS (2007) The mobility and bioavailability of trace metals in tropical soils: A review. Chem Speciation Bioavail 19: 75–85.

    Article  CAS  Google Scholar 

  • Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticles mass transfer on the aerobic biomineralization of alpha hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24: 1349–1354.

    Article  CAS  Google Scholar 

  • Riviere J-L (2000) Ecological risk evaluation of polluted soils. A A Balkema, Rotterdam, 223 pp.

    Google Scholar 

  • Roberts TR (1984) Non-extractable pesticide residues in soils and plants. Pure Appl Chem 56: 945–956.

    Article  Google Scholar 

  • Roberts TR, Standen ME (1981) Further studies of the degradation of the pyrethroid insecticide in soils. Pest Sci 12: 285–296.

    Article  CAS  Google Scholar 

  • Robinson KG, Novak JT (1994) Fate of 2,4,6-trichloro(14C)-phenol bound to dissolved humic acid. Water Res 28: 445–452.

    Article  CAS  Google Scholar 

  • Robinson B, Russell C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria: Implications for New Zealand pastureland. Agric Ecosyst Environ 87: 315–321.

    Article  CAS  Google Scholar 

  • Roch F, Alexander M (1995) Biodegradation of hydrophobic compounds in the presence of surfactants. Environ Toxicol Chem 14: 1151–1158.

    Article  CAS  Google Scholar 

  • Rochette EA, Koskinen WC (1996) Supercritical carbon dioxide for determining atrazine sorption by field-moist soils. Soil Sci Soc Am J 60: 453–460.

    Article  CAS  Google Scholar 

  • Rochette EA, Koskinen WC (1998) Atrazine sorption in field-moist soils: Supercritical carbon dioxide density effects. Chemosphere 36: 1825–1839.

    Article  CAS  Google Scholar 

  • Rosenberg E, Barkey T, Navon-Venezia S, Ron EZ (1999) Role of Acinetobacter bioemulsans in petroleum degradation. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp. 171–180.

    Google Scholar 

  • Rosenberg M, Doyle RJ (1990) Microbial cell surface hydrophobicity: History, measurement, and significance. In: Rosenberg M, Doyle RJ (eds.) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, DC, pp. 1–37.

    Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl Environ Microbiol 37: 402–408.

    CAS  Google Scholar 

  • Roy C, Gaillardon P, Montfort F (2000) The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Manag Sci 56: 795–803.

    Article  CAS  Google Scholar 

  • Ruus A, Schaanning M, Oxnevad S, Hylland K (2005) Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat Toxicol 72: 273–292.

    Article  CAS  Google Scholar 

  • Sabljic A, Gusten H, Verhaar H, Hermens J (1995) QSAR modeling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 31: 4489–4514.

    Article  CAS  Google Scholar 

  • Sander M, Lu Y, Pignatello JJ (2005) A thermodynamically based method to quantify true sorption hysteresis. J Environ Qual 34: 1063–1072.

    Article  CAS  Google Scholar 

  • Sander M, Pignatello JJ (2005) An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter. Environ Sci Technol 39: 7476–7484.

    Article  CAS  Google Scholar 

  • Sayler GS, Cox CD, Burlarge R, Ripp S, Nivens DE, Werner C, Ahn Y, Matrubutham U (1999) Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic/Plenum Publishers, New York, pp. 241–254.

    Google Scholar 

  • Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology: Evaluation of different test systems in soil toxicity assessment. J Soils Sediments 3: 79–84.

    Article  CAS  Google Scholar 

  • Schmidt SK, Schuler M, Alexander M (1986) Predicting threshold concentrations of organic substrates for bacterial growth. J Theor Biol 114: 1–8.

    Article  Google Scholar 

  • Schwartz E, Scow KM (1999) Using biodegradation kinetics to measure availability of aged phenanthrene to bacteria inoculated into soil. Environ Toxicol Chem 18: 1742–1746.

    Article  CAS  Google Scholar 

  • Scott WC, Dean JR (2005) An assessment of the bioavailability of persistent organic pollutants from contaminated soil. J Environ Monitor 7: 710–715.

    Article  CAS  Google Scholar 

  • Scow KM (1993) Effect of sorption-desorption and diffusion processes on the kinetics of biodegradation of organic chemicals in soil. In: Linn DM (ed) Sorption and degradation of pesticides and organic chemicals in soil. Soil Science Society of America and American Society of Agronomy, Madison, WI, pp. 73–114.

    Google Scholar 

  • Scribner SL, Benzing TR, Sun S, Boyd SA (1992) Desorption and bioavailability of aged simazine residues in soil from a continuous corn field. J Environ Qual 21: 115–120.

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur Soil Sci 54: 809–818.

    Article  CAS  Google Scholar 

  • Shah PV, Dauterman WC, Guthrie FE (1972) Penetration of a series of dialkoxy analogs of dimethoate through the isolated gut of insects and animals. Pest Biochem Physiol 2: 324–330.

    Article  CAS  Google Scholar 

  • Shaw DR, Murphy GP (1997) Field persistence of bioavailable flumetsulam. Weed Sci 45: 568–572.

    CAS  Google Scholar 

  • Sha’ato R, Buncel E, Gamble DG, vanLoon GW (2000) Kinetics and equilibria of Metribuzin sorption on model soil components. Can J Soil Sci 80: 301–307.

    Google Scholar 

  • Sheppard SC (2005) Assessment of long-term fate of metals in soils: Inferences from analogues. Can J Soil Sci 85: 1–18.

    CAS  Google Scholar 

  • Shindo H, Huang PM (1982) Role of Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature 298: 363–365.

    Article  CAS  Google Scholar 

  • Shindo H, Huang PM (1984) Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature 308: 57–58.

    Article  CAS  Google Scholar 

  • Shindo H, Huang PM (1985) Catalytic polymerization of hydroquinone by primary minerals. Soil Sci 139: 505–511.

    Article  CAS  Google Scholar 

  • Shone MGT, Wood AV (1974) A Comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by Barley. I. Absorption in eelation to physico-chemical properties. J Exp Bot 25: 390–400.

    Article  CAS  Google Scholar 

  • Shor LM, Kosson DS (2000) Bioavailability of organic contaminants in soils. In: Valdes JJ (ed) Bioremediation. Kluwer Academic Publishers, Dordrecht, pp. 15–43.

    Google Scholar 

  • Sikora LJ, Kaufman DD, Horng LC (1990) Enzyme activity in soils showing enhanced degradation of organophosphate insecticides. Biol Fertil Soils 9: 14–18.

    Article  CAS  Google Scholar 

  • Singh K, Sasakuma T, Bughio N, Takahashi M, Nakanishi H, Yoshimura E, Nishizawa NK, Mori S (2000) Ability of ancestral wheat species to secrete mugineic acid family phytosiderophores in response to iron deficiency. J Plant Nutr 23: 1973–1981.

    Article  CAS  Google Scholar 

  • Somerville L, Greaves MP (eds) (1987) Pesticide effects on soil microflora. Taylor and Francis.. London, 240 pp.

    Google Scholar 

  • Staempfli C, Becker-van Slooten B, Tarradellas J (2002) Hsp70 instability and induction by a pesticide in Folsomia candida. Biomarkers 7: 68–79.

    Article  CAS  Google Scholar 

  • Staempfli C, Tarradellas J, Becker-van Slooten K (2007) Effects of dinoseb on energy reserves in the soil arthropod Folsomia candida. Ecotoxicol Environ Saf 68: 263–271.

    Article  CAS  Google Scholar 

  • Stalder L, Pestemer W (1980) Availability to plants of herbicide residues in soil. Part I: A rapid method for estimating potentially available residues of herbicides. Weed Res 20: 341–347.

    Article  CAS  Google Scholar 

  • Stehouwer RC, Dick WA, Traina SJ (1993) Characteristics of earthworm burrow lining affecting atrazine sorption. J Environ Qual 22: 181–185.

    Article  CAS  Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores. Environ Sci Technol 21: 1201–1208.

    Article  CAS  Google Scholar 

  • Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65: 163–168.

    CAS  Google Scholar 

  • Stenersen J, Oeien N (1980) Action of pesticides on earthworms: Part IV. Uptake and elimination of oxamyl compared with carbofuran. Pest Sci 11: 396–400.

    Article  CAS  Google Scholar 

  • Stokes JD, Paton GI, Semple KT (2005) Behaviour and assessment of bioavailability of organic contaminants in soil: Relevance for risk assessment and remediation. Soil Use Manage 21(Suppl. 2): 475–486.

    Article  Google Scholar 

  • Streibig JC (1979) Some properties influencing soil adsorption and phytotoxicity of atrazine and simazine in nine Danish soils. Acta Agric Scand 29: 33–41.

    Article  CAS  Google Scholar 

  • Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53: 292–297.

    CAS  Google Scholar 

  • Subba-Rao RV, Alexander M (1982) Effect of sorption on mineralization of low concentrations of aromatic compounds in lake water samples. Appl Environ Microbiol 44: 659–668.

    CAS  Google Scholar 

  • Sutter GR, Steward JW (1995) Toxicity of insecticides to larvae of the Mexican corn rootworm in a soil bioassay. Southwest Entomol 20: 1–4.

    CAS  Google Scholar 

  • Szmigielska AM, Schoenau JJ, Greer K (1998) Comparison of chemical extraction and bioassay for measurement of metsulfuron in soil. Weed Sci 46: 487–493.

    CAS  Google Scholar 

  • Tamminen MV, Virta MPJ (2007) Quantification of ecotoxicological tests based on bioluminescence using Polaroid film. Chemosphere 66: 1329–1335.

    Article  CAS  Google Scholar 

  • Tang J, Alexander M (1999) Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 18: 2711–2714.

    Article  CAS  Google Scholar 

  • Tang J, Carroquino MJ, Robertson BK, Alexander M (1998) Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 32: 3586–3590.

    Article  CAS  Google Scholar 

  • Tang J, Robertson BK, Alexander M (1999) Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ Sci Technol 33: 4346–4351.

    Article  CAS  Google Scholar 

  • Teisseire H, Couderchet M, Vernet G (6 May 1997) Mededelingen- Faculteit-Landbouwkundige en Toegepaste-Biologische-Wetenschappen. Proceedings of the 49th International Symposium on Crop Protection, 62:2a: 243–249, Gent, Belgium, Universiteit Gent.

    Google Scholar 

  • Thomas JM, Yordy JR, Amador JA, Alexander M (1986) Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl Environ Microbiol 52: 290–296.

    CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60: 258–263.

    CAS  Google Scholar 

  • Tiehm A, Fritzsche C (1995) Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl Microbiol Biotechnol 42: 964–968.

    Article  CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31: 2570–2576.

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661–663.

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81: 2280–2284.

    Article  CAS  Google Scholar 

  • Tinsley IJ (1979) Chemical concepts in pollutant behavior. John Wiley & Sons, New York, pp.265.

    Google Scholar 

  • Toba FA, Hay AG (2005) A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Methods 62: 135–143.

    Article  CAS  Google Scholar 

  • Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56: 767–778.

    Article  CAS  Google Scholar 

  • Trapp S, Larsen M, Christiansen H (2001) Experimental data on the kinetics of the degradation of cyanide after uptake in plants (research articles). Umweltwissenschaften und Schadstoff-Forschung 13: 29–37.

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29: 2333–2338.

    Article  CAS  Google Scholar 

  • Trapp S, Mc Farlane C, Matthies M (1994) Model for uptake of xenobiotics into plants: Validation with bromacil experiments. Environ Toxicol Chem 13: 413–422.

    Article  CAS  Google Scholar 

  • Tsomides HJ, Hughes JB, Thomas JM, Ward CH (1995) Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ Toxicol Chem 14: 953–959.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1991) Standard default exposure factors. OSWER Directive 9285.6–03.

    Google Scholar 

  • US Environmental Protection Agency (1997) Exposure Factors Handbook. Update to Exposure Factors Handbook, May 1989. Office of Research and Development. EPA/600/P-95/002Fa.

    Google Scholar 

  • Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71: 3797–3805.

    Article  CAS  Google Scholar 

  • Van Brummelen TC, Verweij RA, Wedzinga SA, Van Gestel CAM (1996) Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 32: 315–341.

    Article  Google Scholar 

  • Van Der Oost R, Opperhuizen A, Satumalay K, Heida H, Vermeulen NPE (1996) Biomonitoring aquatic pollution with feral eel (Anguilla anguilla). I. Bioaccumulation: Biota-sediment ratios of PCBs, OCPs, PCDDs and PCDFs. Aquat Toxicol 35: 21–46.

    Article  Google Scholar 

  • Van der Wal L, Jager T, Fleuren RHLJ, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38: 4828–4848.

    Article  CAS  Google Scholar 

  • van Gestel CAM, Ma W (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotoxicol Environ Saf 15: 289–297.

    Article  Google Scholar 

  • Vencill WK, Banks PA (1994) Dissipation of chlorimuron in southern soils. Weed Sci 42: 625–628.

    CAS  Google Scholar 

  • Verma A, Pillai M (1991) Bioavailability of soil-bound residues of DDT and HCH to earthworms. Curr Sci 61: 840–843.

    CAS  Google Scholar 

  • Villemur R, Deziel E, Benachenhou A, Marcoux J, Gauthier E, Lepine F, Beaudet R, Comeau Y (2000) Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil. Biotechnol Prog 16: 966–972.

    Article  CAS  Google Scholar 

  • Vizantinopoulos S, Lolos P (1994) Persistence and leaching of the herbicide imazapyr in soil. Bull Environ Contam Toxicol 52: 404–410.

    Article  CAS  Google Scholar 

  • Walker EL (2002) Functional analysis of the Arabidopsis yellow stripe-like (YSL) family. Heavy metal transport and partitioning via metal-nicotianamine (NA) complexes. Plant Physiol 129: 431–432.

    Google Scholar 

  • Walker A, Jurado-Exposito M (1998) Adsorption of isoproturon, diuron and metsulfuron-methyl in two soils at high soil: Solution ratios. Weed Res 38: 229–238.

    Article  CAS  Google Scholar 

  • Walker A, Turner IJ, Cullington JE, Welch SJ (1999) Aspects of the adsorption and degradation of isoproturon in a heavy clay soil. Soil Use Manage 15: 9–13.

    Article  Google Scholar 

  • Wang J-M, Marlowe E, Miller-Maier R, Brusseau ML (1998) Cyclodextrin-Enhanced Biodegradation of Phenanthrene. Environ Sci Technol 32: 1907–1912.

    Article  CAS  Google Scholar 

  • Watwood ME, Kay-Shoemake JL (2000) Impact of polyacrylamide treatment on sorptive dynamics and degradation of 2,4-D and atrazine in agricultural soil. J Soil Contam 9: 133–147.

    Article  CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders JBH, Kloskowski T, Tanaka K, Rubin B, Katayama A, Koerdel W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: Theory, measurement, uses, limitations and reliability. Pest Manag Sci 58: 419–445.

    Article  CAS  Google Scholar 

  • Weber JB, Weed SB (1974) Effects of soil on the biological activity of pesticides. In: Guenzi WD (ed) Pesticides in soil and water. Soil Science Society of America, Inc., Madison, WI, pp. 223–256.

    Google Scholar 

  • Weed SB, Weber JB (1974) Pesticide-organic matter interactions. In: Guenzi WD (ed.) Pesticides in soil and water. Soil Science Society of America, Inc., Madison, WI, pp. 39–66.

    Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995a) Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19: 22–28.

    Article  CAS  Google Scholar 

  • Weissenhorn I, Mench M, Leyval C (1995b) Bioavailability of heavy metals and arbuscular mycorrhiza in a sewage-sludge-amended sandy soil. Soil Biol Biochem 27: 287–296.

    Article  CAS  Google Scholar 

  • Welhouse GJ, Bleam WF (1993) Cooperative hydrogen bonding of atrazine. Environ Sci Technol 27: 500–505.

    Article  CAS  Google Scholar 

  • White JC, Alexander M, Pignatello JJ (1999a) Enhancing the bioavailability of organic compounds sequestered in soil and aquifer solids. Environ Toxicol Chem 18: 182–187.

    Article  CAS  Google Scholar 

  • White JC, Hunter M, Nam K, Pignatello JJ, Alexander M (1999b) Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environ Toxicol Chem 18: 1720–1727.

    Article  CAS  Google Scholar 

  • White JC, Hunter M, Pignatello JJ, Alexander M (1999c) Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene. Environ Toxicol Chem 18: 1728–1732.

    Article  CAS  Google Scholar 

  • White JC, Kelsey JW, Hatzinger PB, Alexander M (1997) Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ Toxicol Chem 16: 2040–2045.

    Article  CAS  Google Scholar 

  • White JC, Quinones-Rivera A, Alexander M (1998) Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil. Environ Toxicol Chem 17: 2378–2382.

    Article  CAS  Google Scholar 

  • Wiles JA, Jepson PC (1993a) The dietary toxicity of deltamethrin to the carabid, Nebria brevicollis (F.). Pest Sci 38: 329–334.

    Article  CAS  Google Scholar 

  • Wiles JA, Jepson PC (1993b) Predicting the short-term toxicity of deltamethrin to Nebria brevicollis (F.) (Coeloptera: Carabidae) in a temperate cereal crop. Sci Total Environ 134(Suppl. 2): 823–831.

    Google Scholar 

  • Willumsen B, Gray MR, Dudas MJ (1997) Biological degradation of anthracene in soil after sorption from non-aqueous phase liquids. Environ Technol 18: 755–762.

    Article  CAS  Google Scholar 

  • Winder L, Hirst DJ, Carter N, Wratten SD, Sopp PI (1994) Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. J Appl Ecol 31: 1–12.

    Article  Google Scholar 

  • Wong DCL, Dorn PB, Chai EY (1997) Acute toxicity and structure-activity relationships of nine alcohol ethoxylate surfactants to farthead minnow and Daphina magna.. Environ Toxicol Chem 16: 1970–1976.

    CAS  Google Scholar 

  • Wszolek PC, Alexander M (1979) Effect of desorption rate on the biodegradation of n-alkylamines bound to clay. J Agric Food Chem 27: 410–414.

    Article  Google Scholar 

  • Wybieralski J (1992) The formulation effect of propoxur on leaching as a function of soil properties. Sci Total Environ 123: 513–518.

    Article  Google Scholar 

  • Xiang TX, Anderson BD (1994) The relationship between permeant size and permeability in lipid bilayer-membranes. J Membrane Biol 140: 111–122.

    Article  CAS  Google Scholar 

  • Yarden O, Freund M, Rubin B (1993) Dunaliella salina: A convenient test organism for detection of pesticides residues in water and soil. Fresenius Environ Bull 2: 31–36.

    CAS  Google Scholar 

  • Yazgan MS, Wilkins RM, Sykas C, Hoque E (2005) Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran. Chemosphere 60: 1325–1331.

    Article  CAS  Google Scholar 

  • You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40: 6348–6353.

    Article  CAS  Google Scholar 

  • You J, Landrum PE, Trimble TA, Lydy MJ (2007b) Availability of polychlorinated biphenyls in field-contaminated sediment. Environ Toxicol Chem 26: 1940–1948.

    Article  CAS  Google Scholar 

  • You I, Pehkonen S, Landrum PF, Lydy MJ (2007a) Desorption of hydrophobic compounds from laboratory-spiked sediments measured by tenax absorbent and matrix solid-phase microextraction. Environ Sci Technol 41: 5672–5678.

    Article  CAS  Google Scholar 

  • Young SD, Zhang H, Tye AM, Maxted A, Thums C, Thornton I (2005) Characterizing the availability of metals in contaminated soils. I. The solid phase: Sequential extraction and isotopic dilution. Soil Use Manage 21: 450–458.

    Article  Google Scholar 

  • Yu YL, Wu XM, Li SN, Fang H, Tan YJ, Yu JQ (2005) Bioavailability of butachlor and myclobutanil residues in soil to earthworms. Chemosphere 59: 961–967.

    Article  CAS  Google Scholar 

  • Yucheng F, Park JH, Voice TC, Boyd S (2000) Bioavailability of soil sorbed biphenyl to bacteria. Environ Sci Technol 34: 1977–1984.

    Article  CAS  Google Scholar 

  • Zang Y, Zhong Y, Luo Y, Kong ZM (2000) Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ Pollut 108: 271–278.

    Article  CAS  Google Scholar 

  • Zhang B, Smith PN, Anderson TA (2006) Evaluating the bioavailability of explosive metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), in soils using passive sampling devices. J Chrom A 1101: 38–45.

    Article  CAS  Google Scholar 

  • Zhao X, Szafranski MJ, Maraqa MA, Voice TC (1999) Sorption and bioavailability of carbon tetrachloride in a low organic content sandy soil. Environ Toxicol Chem 18: 1755–1762.

    Article  CAS  Google Scholar 

  • Zhao X, Voice TC (2000) Assessment of bioavailability using a multicolumn system. Environ Sci Technol 34: 1506–1512.

    Article  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2000) Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium. J Chem Technol Biotechnol 75: 1183–1189.

    Article  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2001) Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76: 423–429.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by IUPAC as project No.1999-041-1-600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arata Katayama .

Editor information

Editors and Affiliations

1 Appendix: A Description of Equation Symbols, and the Units They Use

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katayama, A. et al. (2010). Bioavailability of Xenobiotics in the Soil Environment. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 203. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1352-4_1

Download citation

Publish with us

Policies and ethics