Advertisement

Uniqueness and Nonuniqueness in Inverse Hyperbolic Problems and the Black Hole Phenomenon

  • Gregory Eskin
Chapter
Part of the International Mathematical Series book series (IMAT, volume 13)

Abstract

We review recent results on inverse problems for the wave equation in an (n + 1)-dimensional space equipped with a pseudo-Riemannian met- ric with Lorentz signature and discuss conditions for the existence of black (white) holes for these wave equations. We prove energy type estimates on a finite time interval in the presence of black or white holes. These estimates are used to prove the nonuniqueness in inverse problems.

Keywords

Black Hole Inverse Problem Characteristic Surface Erential Equation Jordan Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belishev, M.: Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Probl. 13, R1-R45 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, II, Interscience, New York et al. (1962)MATHGoogle Scholar
  3. 3.
    Eskin, G.: A new approach to the hyperbolic inverse problems. Inverse Probl. 22, no. 3, 815–831 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eskin, G.: A new approach to the hyperbolic inverse problems II: global step. Inverse Probl. 23, no. 6, 2343–2356 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Eskin, G.: Inverse hyperbolic problems with time-dependent coefficients. Commun. Partial Differ. Equ. 32, 1737–1758 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eskin, G.: Optical Aharonov-Bohm effect: inverse hyperbolic problem approach. Commun. Math. Phys. 284, 317–343 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eskin, G.: Inverse hyperbolic problems and optical black holes. ArXiv:0809.3987 (2008)Google Scholar
  8. 8.
    Eskin, G.: Perturbations of the Kerr black hole in the class of axisymmetric artificial black holes. ArXiv:0905.4129 (2009)Google Scholar
  9. 9.
    Eskin, G., Ralston, J.: On the determination boundaries for hyperbolic equations. ArXiv:0902.4497 (2009)Google Scholar
  10. 10.
    Gordon, W.: Ann. Phys. (Leipzig) 72, 421 (1923)Google Scholar
  11. 11.
    Hartman, F.: Ordinary Differential Equations. John Wiley and Sons, New York (1964)MATHGoogle Scholar
  12. 12.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators III, Springer, Berlin (1985)MATHGoogle Scholar
  13. 13.
    Katchalov, A., Kurylev, Y., Lassas, M.: Inverse Boundary Spectral Problems. Chapman and Hall, Boca Baton (2001)MATHGoogle Scholar
  14. 14.
    Kozlov, V., Maz'ya, V., Fomin, A.: The inverse problem of coupled thermoelasticity. Inverse Probl. 10, 153–160 (1994)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Novello, M., Visser, M., Volovik, G. (Eds.): Artificial Black Holes: World Scientific, Singapore (2002)Google Scholar
  16. 16.
    Tataru, D.: Unique continuation for solutions to PDE. Commun. Partial Differ. Equ. 20, 855–884 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Visser, M.: Acoustic black holes, horizons, ergospheres and Hawking radiation. Classical Quantum Gravity 15, no. 6, 1767–1791 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations