Finite Rank Toeplitz Operators in the Bergman Space

Part of the International Mathematical Series book series (IMAT, volume 13)


We discuss resent developments in the problem of description of finite rank Toeplitz operators in different Bergman spaces and give some applications.


Compact Support Toeplitz Operator Landau Level Bergman Space Bergman Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleman, A., Vukotić, D.: Zero products of Toeplitz operators. Duke Math. J. [To appear]
  2. 2.
    Alexandrov, A., Rozenblum G.: Finite rank Toeplitz operators. Some extensions of D. Luecking's theorem. J. Funct. Anal. 256, 2291–2303 (2009)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brown, A., Halmos, P.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213, 89–102 (1963/1964)MathSciNetGoogle Scholar
  4. 4.
    Bruneau, V., Pushnitski, A., Raikov, G.: Spectral shift function in strong magnetic field. St. Petersburg Math. J. 16, no. 1, 181–209 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Choe, B.R.: On higher dimensional Luecking's theorem. J. Math. Soc. Japan 61, no. 1, 213–224 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Choe, B.R., Koo, H., Lee, Y.: Zero products of Toeplitz operators with n-harmonic symbols. Integral Equat. Operator Theory 57, no. 1, 43–66 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Choe, B.R., Koo, H., Young, J.L.: Finite sums of Toeplitz products on the polydisk.∼choebr/papers/finitesum_polydisk.pdf
  8. 8.
    Ding, X.: Products of Toeplitz operators on the polydisk. Int. Equat. Operator Theory 45, no. 4, 389–403 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Guo, K., Sun, S., Zheng, D.: Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols. Illinois J. Math. 51, no. 2, 583–596 (2007)MATHMathSciNetGoogle Scholar
  10. 10.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. V.1. Springer, 1983.Google Scholar
  11. 11.
    Le, T.: A refined Luecking's theorem and finite-rank products of Toeplitz operators. Complex Analysis and Operator Theory arXiv:0802.3925Google Scholar
  12. 12.
    Le, T.: Finite rank products of Toeplitz operators in several complex variables. Int. Equat. Operator Theory
  13. 13.
    Luecking, D.: Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73, no. 2, 345–368 (1987)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Luecking, D.: Finite rank Toeplitz operators on the Bergman space. Proc. Am. Math. Soc. 136, no. 5, 1717–1723 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Martines-Avendaño, R., Rosenthal, P.: An Introduction to Operators on the. Hardy-Hilbert Space. Springer (2007)Google Scholar
  16. 16.
    Maz'ya, V.G., Verbitsky, I.: The Schrödinger operator on the energy space: boundedness and compactness criteria. Acta Math. 188, no. 2, 263–302 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Maz'ya, V.G., Verbitsky, I.: Form boundedness of the general second-order differential operator. Commun. Pure Appl. Math. 59, no. 9, 1286–1329 (2006)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Melgaard, M., Rozenblum, G.: Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank. Commun. Partial Differ. Equ. 28, 697–736 (2003)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Raikov, G., Warzel, S.: Quasi-classical versus non-classical spectral asymptotics for magnetic Schroödinger operators with decreasing electric potentials. Rev. Math. Phys. 14, 1051–1072 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rodberg, L., Thaler, R.: Introduction to the Quantum Theory of Scattering. Academic Press (1965)Google Scholar
  21. 21.
    Rozenblum, G., Shirokov, N.: Finite rank Bergman–Toeplitz and Bargmann– Toeplitz operators in many dimensions. Complex Analysis and Operator Theory [To appear] arXiv:0802.0192.Google Scholar
  22. 22.
    Rudin, W.: Real and Complex Analysis. 3rd ed., McGraw-Hill Book Co., New York, 1987MATHGoogle Scholar
  23. 23.
    Yafaev, D.: Scattering Theory; Some Old and New Problems. Lect. Notes Math. 1735, Springer (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsChalmers University of TechnologyGothenburgSweden
  2. 2.Department of MathematicsUniversity of GothenburgGothenburgSweden

Personalised recommendations