Skip to main content

W 2,p-Theory of the Poincaré Problem

  • Chapter
  • First Online:
Book cover Around the Research of Vladimir Maz'ya III

Part of the book series: International Mathematical Series ((IMAT,volume 13))

  • 661 Accesses

Abstract

We present some recent results regarding the W 2,p-theory of a degenerate oblique derivative problem for second order uniformly elliptic operators. The boundary operator is prescribed in terms of directional derivative with respect to a vector field l which is tangent to \(\partial \Omega \) at the points of a nonempty set \(\varepsilon \subset \partial \Omega \): Sufficient conditions are given ensuring existence, uniqueness and regularity of solutions in the L p-Sobolev scales. Moreover, we show that the problem considered is of Fredholm type with index zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S., Douglis, A, Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959); II, ibid. 17, 35–92 (1964)

    Google Scholar 

  2. Borrelli, R.L.: The singular, second order oblique derivative problem. J. Math. Mech. 16, 51–81 (1966)

    MATH  MathSciNet  Google Scholar 

  3. Egorov, Y.V.: Linear Differential Equations of Principal Type. Contemporary Soviet Mathematics, New York (1986)

    MATH  Google Scholar 

  4. Egorov, Y.V., Kondrat'ev, V.: The oblique derivative problem. Math. USSR Sb. 7, 139–169 (1969)

    Article  MATH  Google Scholar 

  5. Elling, V.; Liu, T.-P.: Supersonic flow onto a solid wedge. Commun. Pure Appl. Math. 61, 1347–1448 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eskin, G.I.: Degenerate elliptic pseudodifferential equations of principal type. Math. USSR Sb. 11, 539–582 (1971)

    Article  MATH  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer, Berlin et. (1983)

    MATH  Google Scholar 

  8. Guan, P.: Hölder regularity of subelliptic pseudodifferential operators. Duke Math. J. 60, 563–598 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guan, P., Sawyer, E.: Regularity estimates for the oblique derivative problem. Ann. Math. 137, 1–70 (1993)

    Article  MathSciNet  Google Scholar 

  10. Guan, P., Sawyer, E.: Regularity estimates for the oblique derivative problem on nonsmooth domains I. Chine. Ann. Math., Ser. B 16, 1–26 (1995); II, ibid. 17, 1–34 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Holmes, J.J.: Theoretical development of laboratory techniques for magnetic measurement of large objects. IEEE Trans. Magnetics 37, 3790–3797 (2001)

    Article  Google Scholar 

  12. Hörmander, L.: Pseudodifferential operators and non-elliptic boundary value problems. Ann. Math. 83, 129–209 (1966)

    Article  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators; IV: Fourier Integral Operators. Springer, Berlin (1985)

    Google Scholar 

  14. Martin, P.A.: On the diffraction of Poincaré waves. Math. Methods Appl. Sci. 24, 913–925 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Math. Res. 109, Wiley–VCH, Berlin (2000)

    Book  Google Scholar 

  16. Maugeri, A., Palagachev, D.K., Vitanza, C.: A singular boundary value problem for uniformly elliptic operators. J. Math. Anal. Appl. 263, 33–48 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maz'ya, V.G.: The degenerate problem with an oblique derivative (Russian). Mat. Sb., N. Ser. 87(129), 417–454 (1972); English transl.: Math. USSR Sb. 16, 429–469 (1972)

    MATH  Google Scholar 

  18. Maz'ya, V.G.: Paneyah, B.P.: Degenerate elliptic pseudo-differential operators and the problem with oblique derivative (Russian). Tr. Moskov. Mat. Ob. 31, 237–295 (1974)

    Google Scholar 

  19. Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Commun. Partial Differ. Equ. 1, 313–400 (1976)

    Article  MATH  Google Scholar 

  20. Palagachev, D.K.: The tangential oblique derivative problem for second order quasilinear parabolic operators. Commun. Partial Differ. Equ. 17, 867–903 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Palagachev, D.K.: The Poincaré problem in L p-Sobolev spaces I: Codimension one degeneracy. J. Funct. Anal. 229, 121–142 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Palagachev, D.K.: Neutral Poincaré Problem in L p-Sobolev Spaces: Regularity and Fredholmness. Int. Math. Res. Notices 2006, Article ID 87540 (2006)

    MathSciNet  Google Scholar 

  23. Palagachev, D.K.: W 2,p-a priori estimates for the neutral Poincaré problem. J. Nonlinear Convex Anal. 7, 499–513 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Palagachev, D.K.: W 2,p-a priori estimates for the emergent Poincaré problem. J. Glob. Optim. 40, 305–318 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Palagachev, D.K.: The Poincaré problem in L p-Sobolev spaces II: Full dimension degeneracy. Commun. Partial Differ. Equ. 33, 209–234 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Paneyah, B.P.: ON a problem with oblique derivative. Sov. Math. Dokl. 19, 1568–1572 (1978)

    Google Scholar 

  27. Paneyah, B.P.: On the theory of solvability of the oblique derivative problem. Math. USSR Sb. 42, 197–235 (1982)

    Article  Google Scholar 

  28. Paneyah, B.P.: The Oblique Derivative Problem. The Poincaré Problem. Math. Topics 17, Wiley–VCH, Berlin (2000)

    Google Scholar 

  29. Poincaré, H.: Lecons de Méchanique Céleste, Tome III, Théorie de Marées, Gauthiers–Villars, Paris (1910)

    Google Scholar 

  30. Popivanov, P.R.: On the tangential oblique derivative problem — methods, results, open problems. Gil, Juan (ed.) et al., Aspects of boundary problems in analysis and geometry. Birkhaüser, Basel. Operator Theory: Advances and Applications 151, pp. 430–471 (2004)

    Google Scholar 

  31. Popivanov, P.R., Kutev, N.D.: The tangential oblique derivative problem for nonlinear elliptic equations. Commun. Partial Differ. Equ. 14, 413–428 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Popivanov, P.R., Kutev, N.D.: Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations. Math. Nachr. 278, 888–903 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Popivanov, P.R., Palagachev, D.K.: The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations. Math. Res. 93, Akademie-Verlag, Berlin (1997)

    Google Scholar 

  34. Softova, L.G.: W p 2,1-solvability for the parabolic Poincaré problem. Commun. Partial Differ. Equ. 29, 1783–1789 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Taira, K.: Semigroups, Boundary Value Problems and Markov Processes. Springer Monographs in Mathematics, Springer, Berlin (2004)

    MATH  Google Scholar 

  36. Winzell, B.: The oblique derivative problem I. Math. Ann. 229, 267–278 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  37. Winzell, B.: Sub-elliptic estimates for the oblique derivative problem. Math. Scand. 43, 169–176 (1978)

    MATH  MathSciNet  Google Scholar 

  38. Winzell, B.: A boundary value problem with an oblique derivative. Commun. Partial Differ. Equ. 6, 305–328 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zheng, Y: A global solution to a two-dimensional Riemann problem involving shocks as free boundaries. Acta Math. Appl. Sin. Engl. Ser. 19, 559–572 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian K. Palagachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palagachev, D.K. (2010). W 2,p-Theory of the Poincaré Problem. In: Laptev, A. (eds) Around the Research of Vladimir Maz'ya III. International Mathematical Series, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1345-6_10

Download citation

Publish with us

Policies and ethics