Stationary Navier–Stokes Equation on Lipschitz Domains in Riemannian Manifolds with Nonvanishing Boundary Conditions

Part of the International Mathematical Series book series (IMAT, volume 12)


In the previous work, the author and M. Mitrea presented a method of solving the stationary Navier-Stokes equation on Lipschitz domains in Riemannian manifolds via the boundary integral technique, where only the vanishing Dirichlet boundary condition was considered. In this paper, more sophisticated estimates are developed, which allows us to consider arbitrary large (dim M ≤ 4) Dirichlet boundary data for this equation.


Riemannian Manifold Stokes Equation Lipschitz Domain Stokes Problem Stokes System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amrouche, C., Girault, V.: On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Japan Acad., Ser. A Math. Sci. 67, 171–175 (1991)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brown, R.M., Shen, Z.: Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44, 1183–1206 (1995)MathSciNetMATHGoogle Scholar
  4. 4.
    Deuring, P.: The Stokes System in an Infinite Cone. Akadem.-Verlag. Berlin (1994)Google Scholar
  5. 5.
    Deuring, P.: The Stokes resolvent in 3D domains with conical boundary points: nonregularity in L p-spaces. Adv. Differ. Equ. 6, 175–228 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Carverhill, A., Pedit, F.J.: Global solutions of the Navier-Stokes equation with strong viscosity. Ann. Global Anal. Geom. 10, 255–261 (1992)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)MathSciNetMATHGoogle Scholar
  8. 8.
    Dindoš, M., Mitrea, M.: Stationary Navier–Stokes equation on Lipschitz domain in Riemannian manifolds. Arch. Ration. Mech. Anal. 174, no. 1, 1–47 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Frehse, J., Ružička, M.: Existence of regular solutions to the steady Navier–Stokes equations in bounded six-dimensional domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 701–719 (1996)MathSciNetMATHGoogle Scholar
  11. 11.
    Frehse, J., Ružička, M.: A new regularity criterion for steady Navier–Stokes equations. Differ. Integral Equations 11, 361–368 (1998)MATHGoogle Scholar
  12. 12.
    Frehse, J., Ružička, M.: Regularity for steady solutions of the Navier-Stokes equations. In: Heywood, J.G. et al. (eds.), Theory of the Navier-Stokes Equations, pp. 159–178. World Scientific, Singapore (1998)Google Scholar
  13. 13.
    Galdi, G.P., Simader, C.G.: Existence, uniqueness and L q-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Galdi, G.P., Simader, C.G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. 167, 147–163 (1994)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329 (1981)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Maz'ya, V., Rossmann, J.: Pointwise estimates for Green's kernel of mixed boundary value problem to the Stokes system in polyhedral cone. Math. Nachr. 278, no. 15, 1766–1810 (2005)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Maz'ya, V., Rossmann, J.: Schauder estimates for solution to a mixed boundary value problem for the Stokes system in polyhedral domains. Math. Meth. Appl. Sci. 29, 965–1017 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Maz'ya, V., Rossmann, J.: A Maximum Modules Estimate for Solutions of the Navier–Stokes System in Domains of Polyhedral Type. Preprint.Google Scholar
  19. 19.
    Mazzucato, A.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1364 (2003)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Mitrea. M., Taylor, M.: Navier–Stokes Equations on Lipschitz Domains in Riemannian manifolds. Math. Ann. 321, no. 4, 955–987 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nagasawa, T.: Navier–Stokes flow on Riemannian manifolds. Nonlinear Anal. 30, 825–832 (1997)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Priebe, V.: Solvability of the Navier–Stokes equations on manifolds with boundary. Manuscripta Math. 83, 145–159 (1994)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Struwe, M.: Regular solutions of the stationary Navier–Stokes equations on R5. Math. Ann. 302, 719–741 (1995)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Struwe, M.: Regularity results for the stationary Navier–Stokes equations. In: Differential Equations and Mathematical Physics, pp. 213–216. Int. Press, Boston (1995)Google Scholar
  25. 25.
    Shkoller, S.: Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid. J. Differ. Geom. 55, 145–191 (2000)MathSciNetMATHGoogle Scholar
  26. 26.
    Taylor, M.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)MATHCrossRefGoogle Scholar
  27. 27.
    Taylor, M.: Partial Differential Equations. I–III. Springer, New York (1996)Google Scholar
  28. 28.
    Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. Elsevier, Amsterdam (1984)MATHGoogle Scholar
  29. 29.
    Temam, R., Wang, S.: Intertial forms of Navier–Stokes equations on the sphere. J. Funct. Anal. 117, 215–242 (1993)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Temam, R., Ziane, M.: Navier–Stokes equations in thin spherical domains. Contemp. Math. 209, 281–314 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Mathematics, Maxwell Institute of Mathematics Sciences, University of EdinburghEdinbughUK

Personalised recommendations