Skip to main content

Boundary Coerciveness and the Neumann Problem for 4th Order Linear Partial Differential Operators

  • Chapter
  • First Online:
Around the Research of Vladimir Maz'ya II

Part of the book series: International Mathematical Series ((IMAT,volume 12))

Abstract

The relationship between the classical interior coercive estimate over W2,2(Ω) and a required boundary coercive estimate for solutions to the L2(∂Ω) Neumann problem is discussed. A conditional lemma in which boundary coerciveness implies interior is proved. Hilbert’s theorem that elliptic operators need not be sums of squares of differential operators and therefore cannot, in general, have formally positive integro–differential forms is discussed. An elliptic operator that is a sum of squares yet has no formally positive coercive form is displayed. The existence of coercive forms for elliptic operators far away from sums of squares is questioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, S.: The coerciveness problem for integro-differential forms. J. Anal. Math. 6, 183–223 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S.: Remarks on self-adjoint and semi-bounded elliptic boundary value problems. In: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pp. 1–13. Jerusalem Acad. Press. Jerusalem (1960)

    Google Scholar 

  3. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, NJ (1965)

    MATH  Google Scholar 

  4. Aronszajn, N.: On coercive integro-differential quadratic forms. In: Conference on Partial Differential Equations. Univ. Kansas, Technical Report No. 14, 94–106 (1954)

    Google Scholar 

  5. Aronszajn, N., Milgram, A.N.: Differential operators on Riemannian manifolds. Rend. Circ. Mat. Palermo (2) 2, 266–325 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. USA 74, no. 4, 1324–1327 (1977)

    Article  MATH  Google Scholar 

  7. Choi M. D., Lam, T.Y.: Extremal positive semidefinite forms. Math. Ann. 231, no. 1, 1–18 (1977/78)

    Article  MathSciNet  Google Scholar 

  8. Choi M. D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. Proc. Sympos. Pure Math. 58, 103–126 (1995)

    MathSciNet  Google Scholar 

  9. Coifman, R.R., McIntosh, A., Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur L 2 pur les courbes lipschiziennes, Ann. Math. (2) 116, no. 2, 361–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlberg, B.E.J., Kenig, C.E., frank Verchota, G.C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57, no. 3, 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fabes, E.B., Jodeit, M. Jr., Rivière, N.M.: Potential techniques for boundary value problems on C 1-domains. Acta Math. 141, no. 3–4, 165–186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57 no. 3, 769–793 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Folland, G.B.: Introduction to Partial Differential Equations. Princeton Univ. Press, Princeton, NJ (1995)

    MATH  Google Scholar 

  14. Hardy, G.H., Littlewood, J.E., PɃlya, G.: Inequalities. Cambridge Univ. Press, Cambridge (1952)

    MATH  Google Scholar 

  15. Hilbert, D.: Uber die Darstellung definiter Formen als Summe von Formen-quadraten. Math. Ann. 32 342–350 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4, no. 2, 203–207 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jerison D.S., Kenig, C.E.: Boundary value problems on Lipschitz domains. In: Studies in Partial Differential Equations, MAA Stud. Math. 23, pp. 1–68. MAA, Washington, DC (1982)

    Google Scholar 

  18. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Intersci. Publ., New York etc. (1955)

    MATH  Google Scholar 

  19. Kozlov, V.A., Maz'ya, V.G.: On the spectrum of an operator pencil generated by the Neumann problem in a cone (Russian). Algebra Anal. 3, no. 2, 111–131 (1991); English transl.: St. Petersburg Math. J. 3, no. 2, 333–353 (1992)

    Google Scholar 

  20. Kozlov, V.A., Maz'ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Am. Math. Soc., Providence, RI (2001)

    MATH  Google Scholar 

  21. Mitrea, M.: The method of layer potentials in electromagnetic scattering theory on nonsmooth domains. Duke Math. J. 77, no. 1, 111–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pipher, J., Verchota, G.C.: Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. (2) 142, no. 1, 1–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Robinson, R.M.: Some definite polynomials which are not sums of squares of real polynomials (Russian). In: Selected Questions of Algebra and Logic (Collection Dedicated to the Memory of A. I. Malcev), pp. 264–282. Nauka, Novosibirsk (1973)

    Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  25. Verchota, G.C.: Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59, no. 3, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Verchota, G.C.: The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ. Math. J. 39, no. 3, 671–702 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Verchota, G.C.: Potentials for the Dirichlet problem in Lipschitz domains. In: Potential Theory (Kouty, 1994), pp. 167–187. Walter de Gruyter, Berlin (1996)

    Google Scholar 

  28. Verchota, G.C.: The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194, no. 2, 217–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Verchota, G.C.: Noncoercive sums of squares in R[x 1,…,x n ]. J. Pure Appl. Algebra (2009) doi:10.1016/j.jpaa.2009.05.012

    Google Scholar 

  30. Verchota, G.C.: On the necessity of Agmon's coerciveness for the analysis of operators with formally positive integro-differential forms [In preparation]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Verchota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Verchota, G.C. (2010). Boundary Coerciveness and the Neumann Problem for 4th Order Linear Partial Differential Operators. In: Laptev, A. (eds) Around the Research of Vladimir Maz'ya II. International Mathematical Series, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1343-2_17

Download citation

Publish with us

Policies and ethics