Hardy Inequalities for Nonconvex Domains

  • Farit Avkhadiev
  • Ari Laptev
Part of the International Mathematical Series book series (IMAT, volume 11)


We obtain a series of Hardy type inequalities for domains involving both distance to the boundary and distance to the origin. In particular, we obtain the Hardy─Sobolev inequality for the class of symmetric functions in a ball and prove that for d ≥ 3 the Hardy inequality involving the distance to the boundary holds with the constant 1/4 in a large family of domains not necessarily convex. We also present an example showing that for any positive fixed constant there is an ellipsoid layer such that the Hardy inequality with the distance to the boundary fails.


Sobolev Inequality Convex Domain Hardy Inequality Heat Kernel Estimate Hardy Type Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avkhadiev, F.G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21, 3–31 (2006)MATHMathSciNetGoogle Scholar
  2. 2.
    Avkhadiev, F.G.: Hardy-type inequalities on planar and spatial open sets. Proc. Steklov Inst. Math. 255, no. 1, 2–12 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Avkhadiev, F.G., Wirths, K.-J.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains. Z. Angew. Math. Mech. 87, 632–642 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brezis, H., Marcus, M.: Hardy's inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, no. 1-2, 217–237 (1997/98)MathSciNetGoogle Scholar
  5. 5.
    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Univ. Press, Cambridge (1995)CrossRefGoogle Scholar
  6. 6.
    Davies, E.B.: A review of Hardy inequalities. In: The Maz'ya Anniversary Collection 2. Oper. Theory Adv. Appl. 110, 55–67 (1999)Google Scholar
  7. 7.
    Filippas, S., Maz'ya, V., Tertikas, A.: Sharp Hardy–Sobolev inequalities. C. R., Math., Acad. Sci. Paris 339, no. 7, 483–486 (2004)MATHMathSciNetGoogle Scholar
  8. 8.
    Filippas, S., Moschini, L., Tertikas, A.: Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains. Commun. Math. Phys. 273, 237–281 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. arXiv:0803.0503v1 [math. AP] 4 Mar. 2008Google Scholar
  10. 10.
    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläsche und Isoperimetrie. Springer (1957)Google Scholar
  11. 11.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, Th., Laptev, A.: A geometrical version of Hardy's inequalities. J. Funct. Anal. 189, no 2, 539–548 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, Th., Laptev, A., Tidblom, J.: Many particle Hardy inequalities. [To appear]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsKazan State UniversityKazanRussia
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Royal Institute of TechnologyStockholmSweden

Personalised recommendations