Bacterial Polysaccharide Vaccines

  • Robert Austrian


Capsulated bacteria, Gram-positive or Gram-negative, cause a variety of infections in man. Prominent among them are streptococci of Lancefield’s groups A, B, and C, staphylococci, meningococci, Haemophilus influenzae type b, klebsiellas, Escherichia coli, and Salmonella typhi, to name but some. Since the description of the capsule as an attribute of bacteria more than a century ago, increasing knowledge of its structure and role in interactions of these organisms with their environment has enabled development of vaccines to enhance defenses of their hosts against infection and their likelihood of recovery when it occurs. Since much what has been learned has been derived from studies of the pneumococcus, emphasis in what follows will focus upon Streptococcus pneumoniae, additional references ­pertinent to other specific vaccines are cited where relevant.


Pneumococcal Vaccine Capsular Polysaccharide Pneumococcal Pneumonia Pneumococcal Infection Polysaccharide Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pasteur L, Chamberland, Roux MM. Sur une maladie nouvelle, provoquée par la salive d’un enfant mort de la rage. C R Acad Sci 1881;92:159–65Google Scholar
  2. 2.
    Sternberg GM. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. Studies Biol Lab Johns Hopkins Univ 1882;2:183–200Google Scholar
  3. 3.
    Friedlander C. Die Mikrokokken der Pneumonie. Fortsch Medicin 1883;1:715–33Google Scholar
  4. 4.
    Bernheimer AW. Synthesis of Type III pneumococcal polysaccharide by suspensions of resting cells. J Exp Med 1953;97:591–600PubMedCrossRefGoogle Scholar
  5. 5.
    Bornstein DL, Schiffman G, Bernheimer HP, Austrian R. Capsulation of pneumococcus with soluble C-like (Cs) polysaccharide. I. Biological and genetic properties of Cs pneumococcal strains. J Exp Med 1968;128:1385–1400Google Scholar
  6. 6.
    Van Dam JEG, Fleer A, Snippe H. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie van Leeuwenhoek 1990;58:1–47PubMedCrossRefGoogle Scholar
  7. 7.
    Jennings HJ. Capsular polysaccharides as vaccine candidates. Curr Top Microbiol Immunol 1990;150:97–127PubMedGoogle Scholar
  8. 8.
    White B. The Biology of Pneumococcus. New York, NY. The Commonwealth Fund, 1938: 2nd Printing, Harvard University Press, 1979Google Scholar
  9. 9.
    Neufeld F, Haendel L. Weitere Untersuchungen über Pneumokokken-Heilsera. III. Mitteilung. Über Vorkommen und Bedeutung atypischer Varietäten des Pneumokokkus. Arb Kais Gesund 1910;34:293–304Google Scholar
  10. 10.
    Dochez AR, Avery OT. The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 1917;26:477–93PubMedCrossRefGoogle Scholar
  11. 11.
    Heidelberger M, Avery OT. The soluble specific substance of pneumococcus. J Exp Med 1923;38:73–9PubMedCrossRefGoogle Scholar
  12. 12.
    Avery OT, Heidelberger M. Immunological relationships of cell constituents of pneumococcus. Second paper. J Exp Med 1925;42:367–76Google Scholar
  13. 13.
    Knecht JC, Schiffman G, Austrian R. Some biological properties of pneumococcus type 37 and the chemistry of its capsular polysaccharide. J Exp Med 1970;132:475–87PubMedCrossRefGoogle Scholar
  14. 14.
    MacLeod CM, Krauss MR. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J Exp Med 1950;92:1–9PubMedCrossRefGoogle Scholar
  15. 15.
    Austrian R. Some aspects of the pneumococcal carrier state. J Antimicrob Chemother 1986; 18 (suppl A):35–45Google Scholar
  16. 16.
    Gwaltney JM, Sande MA, Austrian R, Hendley JO. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S pneumoniae to incidence of colds and serum antibody. J Infect Dis 1975;132:62–8Google Scholar
  17. 17.
    Sternberg GM. Induced septicemia in the rabbit. Am J Med Sci 1882;84:69–76CrossRefGoogle Scholar
  18. 18.
    Wright AE, Parry Morgan W, Colebrook L, Dodgson RW. Observations on prophylactic inoculation against pneumococcus infections and on the results which have been achieved by it. Lancet 1914;1:1–10, 87–95Google Scholar
  19. 19.
    Maynard GD. Memorandum on Rand Mines pneumococcic vaccine experiment. Med J S Afr 1913;9:91–5Google Scholar
  20. 20.
    Lister FS. An experimental study of prophylactic inoculation against pneumococcal infection in the rabbit and in man. Pub S Afr Inst Med Res 1916;8:231–87Google Scholar
  21. 21.
    Heidelberger M, MacLeod CM, Kaiser SJ, Robinson B. Antibody formation in volunteers ­following injection of pneumococci or their type-specific polysaccharides. J Exp Med 1946;83:303–20CrossRefGoogle Scholar
  22. 22.
    MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 1945;82:445–65CrossRefGoogle Scholar
  23. 23.
    Artenstein MS, Gold R, Zimmerly JG, Wyle FA, Schneider H, Harkins C. Prevention of meningococcal disease by Group C polysaccharide. N Engl J Med 1970;282:417–20PubMedCrossRefGoogle Scholar
  24. 24.
    Schiemann 0, Casper W. Sind die spezifisch präcipitablen Substanzen der 3 Pneumokokkentypen Haptene? Zeitschr Hyg Infektionskr 1927;108:220–57Google Scholar
  25. 25.
    Francis T Jr, Tillett WS. Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 1930;52:573–85Google Scholar
  26. 26.
    Ekwurzel GM, Simmons JS, Dublin LI, Felton LD. Studies on immunizing substances in pneumococci. Public Health Rep 1938;53:1877–93Google Scholar
  27. 27.
    Austrian R, Gold J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 1964;60:759–76PubMedGoogle Scholar
  28. 28.
    Finland M, Barnes MW. Changes in occurrence of capsular serotypes of Streptococcus ­pneumoniae at Boston City Hospital during selected years between 1935 and 1974. J Clin Microbiol 1977;5:154–66PubMedGoogle Scholar
  29. 29.
    Austrian R. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 1981;3 (suppl): S1–S17PubMedCrossRefGoogle Scholar
  30. 30.
    Frisch AW, Tripp JT, Barrett CD, Pidgeon BE. The specific polysaccharide content of pneumonic lungs. J Exp Med 1942;76:505–10PubMedCrossRefGoogle Scholar
  31. 31.
    Austrian R, Douglas RM, Schiffman G et al. Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Phys 1976;89:184–92PubMedGoogle Scholar
  32. 32.
    Smit P, Oberholtzer D, Hayden-Smith S, Koornhof HJ, Hilleman HR. Protective efficacy of pneumococcal polysaccharide vaccines. JAMA 1977;238:2613–6PubMedCrossRefGoogle Scholar
  33. 33.
    Simberkoff MS, Cross AP, Al-Ibrahim M et al. Efficacy of pneumococcal vaccine in high-risk patients. Results of a Veterans Administration cooperative study. N Engl J Med 1986;315:1318–27Google Scholar
  34. 34.
    Shapiro ED. Correspondence. Pneumococcal vaccine failure. N Engl J Med 1987;316:272–3Google Scholar
  35. 35.
    Clemens JD, Shapiro ED. Resolving the pneumococcal vaccine controversy: are there alternatives to randomized clinical trials? Rev Infect Dis 1984;6:589–600PubMedCrossRefGoogle Scholar
  36. 36.
    Broome CV, Facklam RR, Fraser DW. Pneumococcal disease after pneumococcal vaccination. An alternative method to estimate the efficacy of pneumococcal vaccine. N Engl J Med 1980;303:549–52Google Scholar
  37. 37.
    Shapiro ED, Clemens JD. A controlled evaluation of the protective efficacy of pneumococcal vaccine for patients at high risk of serious pneumococcal infections. Ann Intern Med 1984;101:325–30PubMedGoogle Scholar
  38. 38.
    Sims RV, Steinman WC, McConville JH, King LR, Zwick WC, Schwartz JS. The clinical effectiveness of pneumococcal vaccine in the elderly. Ann Intern Med 1988;108:653–7PubMedGoogle Scholar
  39. 39.
    Shapiro ED, Berg AT, Austrian R et al. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 1991;325:1453–60PubMedCrossRefGoogle Scholar
  40. 40.
    Bolan G, Broome CV, Facklam RR, Plikaytis BD, Fraser DW, Schlech WF III. Pneumococcal vaccine efficacy in selected populations in the United States. Ann Intern Med 1986;104:1–6PubMedGoogle Scholar
  41. 41.
    Erwa HH, Haseeb MA, Idris AA, Lapeyssonie L, Sanborn WR, Sippel JE. A serogroup A meningococcal vaccine. Studies in the Sudan to combat meningococcal meningitis caused by Neisseria meningitidis group A. Bull WHO 1973;49:301–5Google Scholar
  42. 42.
    Kaplan MH, Coons AH, Deane HW. Localization of antigen in tissue cells. III. Cellular distribution of pneumococcal polysaccharides Type II and III in the mouse. J Exp Med 1950;91:15–30Google Scholar
  43. 43.
    Felton LD. The significance of antigen in animal tissues J Immunol 1949;61:107–17Google Scholar
  44. 44.
    Heidelberger M, DiLapi MM, Siegel M, Walter AW. Persistence of antibodies in human subjects injected with pneumococcal polysaccharides. J Immunol 1950;65:535–41PubMedGoogle Scholar
  45. 45.
    AustrianR. Confronting drug-resistant pneumococci. Ann Intern Med 1994;121:807–9Google Scholar
  46. 46.
    Davies JAV. The response of infants to inoculation with Type 1 pneumococcus carbohydrate. J Immunol 1937;33:1–7Google Scholar
  47. 47.
    Hodes HL, Ziegler JF, Zepp HD. Development of antibody following vaccination of infants and children against pneumococci. J Pediatr 1944;24:641–9CrossRefGoogle Scholar
  48. 48.
    Douglas RM, Hansman D, Miles HB, Paton JC. Pneumococcal carriage and type-specific antibody. Failure of a 14-valent vaccine to reduce carriage in healthy children. Am J Dis Child 1986;140:1183–5Google Scholar
  49. 49.
    Mäkelä PH, Leinonen M, Pukander J, Karma P. A study of pneumococcal vaccine in prevention of clinically acute attacks of recurrent otitis media. Rev Infect Dis 1981;(Suppl):3:S124–30Google Scholar
  50. 50.
    Devi SJN, Robbins JB, Schneerson R. Antibodies to poly [(2→8)-α-N-acetylneuraminic acid] and poly [(2→9)α-N-acetylmuraminic acid] are elicited by immunization of mice with Escherichia coli K92 conjugates: potential vaccines for groups B and C meningococci and E coli K1. Proc Natl Acad Sci USA 1991;88:7175–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Robert Austrian
    • 1
  1. 1.PhiladelphiaUSA

Personalised recommendations