Advertisement

BOLD fMRI pp 183-213 | Cite as

fMRI of Language Systems: Methods and Applications

  • Jeffrey R. Binder
Chapter

Abstract

Language functions were among the first to be ascribed a specific location in the human brain1 and have been the subject of intense research for over a century. Many researchers across the globe—working in disciplines as varied as linguistics, psychology, neurology, anthropology, and philosophy—have devoted their careers to understanding language processes and their biological bases.

Keywords

Language Task Anterior Temporal Lobe Lateralization Index Language Lateralization Semantic Decision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Broca P. Remarques sur le siège de la faculté du langage articulé; suivies d’une observation d’aphemie. Bull Soc Anat Paris. 1861;6:330–357.Google Scholar
  2. 2.
    Loring DW, Meador KJ, Lee GP, King DW. Amobarbital Effects and Lateralized Brain Function: The Wada Test. New York: Springer-Verlag; 1992.Google Scholar
  3. 3.
    Lesser RP, Lueders H, Klem G, Dinner DS, Morris HH, Hahn JF, et al. Extraoperative cortical functional localization in patients with epilepsy. J Clin Neurophysiol. 1987;4:27–53.PubMedGoogle Scholar
  4. 4.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–326.PubMedGoogle Scholar
  5. 5.
    Pardo JV, Fox PT. Preoperative assessment of the cerebral hemispheric dominance for language with CBF PET. Hum Brain Mapp. 1993;1:57–68.Google Scholar
  6. 6.
    Breier JI, Simos PG, Zouridakis G, Wheless JW, Willmore LJ, Constantinou JE, et al. Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology. 1999;53:938–945.PubMedGoogle Scholar
  7. 7.
    Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, et al. Determination of language dominance using functional MRI: A comparison with the Wada test. Neurology. 1996;46:978–984.PubMedGoogle Scholar
  8. 8.
    Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK, Glover GH, et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain. 1995;118:1411–1419.PubMedGoogle Scholar
  9. 9.
    Bahn MM, Lin W, Silbergeld DL, Miller JW, Kuppusamy K, Cook RJ, et al. Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. Am J Radiol. 1997;169:575–579.Google Scholar
  10. 10.
    Hertz-Pannier L, Gaillard WD, Mott S, Cuenod CA, Bookheimer S, Weinstein S, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48:1003–1012.PubMedGoogle Scholar
  11. 11.
    Worthington C, Vincent DJ, Bryant AE, Roberts DR, Vera CL, Ross DA, et al. Comparison of functional magnetic resonance imaging for language localization and intracarotid speech amytal testing in presurgical evaluation for intractable epilepsy. Stereotact Funct Neurosurg. 1997;69:197–201.PubMedGoogle Scholar
  12. 12.
    Benbadis SR, Binder JR, Swanson SJ, Fischer M, Hammeke TA, Morris GL, et al. Is speech arrest during Wada testing a valid method for determining hemispheric representation of language? Brain Lang. 1998;65:441–446.PubMedGoogle Scholar
  13. 13.
    Yetkin FZ, Swanson S, Fischer M, Akansel G, Morris G, Mueller W, et al. Functional MR of frontal lobe activation: Comparison with Wada language results. Am J Neuroradiol. 1998;19:1095–1098.PubMedGoogle Scholar
  14. 14.
    Benson RR, FitzGerald DB, LeSeuer LL, Kennedy DN, Kwong KK, Buchbinder BR, et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52:798–809.PubMedGoogle Scholar
  15. 15.
    Hirsch J, Ruge MI, K.H.S. K, Correa DD, Victor JD, Relkin NR, et al. An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47:711–722.PubMedGoogle Scholar
  16. 16.
    Lehéricy S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R, et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology. 2000;54:1625–1633.PubMedGoogle Scholar
  17. 17.
    Spreer J, Quiske A, Altenmüller DM, Arnold S, Schulze-Bonhage A, Steinhoff BJ, et al. Unsuspected atypical hemispheric dominance for language as determined by fMRI. Epilepsia. 2001;52:957–959.Google Scholar
  18. 18.
    Liégois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F, Baldeweg T. A direct test for lateralization of language activation using fMRI: Comparison with invasive assessments in children with epilepsy. Neuroimage. 2002;17:1861–1867.Google Scholar
  19. 19.
    Spreer J, Arnold S, Quiske A, Ziyeh S, Altenmüller DM, Herpers M, et al. Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing. Neuroradiology. 2002;44:467–474.PubMedGoogle Scholar
  20. 20.
    Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage. 2003;18:423–438.PubMedGoogle Scholar
  21. 21.
    Sabbah P, Chassoux F, Leveque C, Landre E, Baudoin-Chial S, Devaux B, et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage. 2003;18:460–467.PubMedGoogle Scholar
  22. 22.
    Rutten G-J, Ramsey N, van Rijen P, Alpherts W, van Veelen C. fMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. 2002;17:447–460.PubMedGoogle Scholar
  23. 23.
    Fitzgerald DB, Cosgrove GR, Ronner S, Jiang H, Buchbinder BR, Belliveau JW, et al. Location of language in the cortex: A comparison between functional MR imaging and electrocortical stimulation. Am J Neuroradiol. 1997;18:1529–1539.PubMedGoogle Scholar
  24. 24.
    Stapleton SR, Kiriakipoulos E, Mikulis D, Drake JM, Hoffman HJ, Humphreys R, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26:68–82.PubMedGoogle Scholar
  25. 25.
    Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW, et al. Functional MR activation correlated with intraoperative cortical mapping. Am J Neuroradiol. 1997;18:1311–1315.PubMedGoogle Scholar
  26. 26.
    Ruge MI, Victor JD, Hosain S, Correa DD, Relkin NR, Tabar V, et al. Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg. 1999;72:95–102.PubMedGoogle Scholar
  27. 27.
    Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg. 1999;91:626–635.PubMedGoogle Scholar
  28. 28.
    Lurito JT, Lowe MJ, Sartorius C, Mathews VP. Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr. 2000;24:99–105.PubMedGoogle Scholar
  29. 29.
    Rutten GJM, van Rijen PC, van Veelen CWM, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol. 1999;46:405–408.PubMedGoogle Scholar
  30. 30.
    Rutten GJM, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CW. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51:350–360.PubMedGoogle Scholar
  31. 31.
    Rutten GJ, Ramsey N, van Rijen P, van Veelen C. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 2002;80:421–437.PubMedGoogle Scholar
  32. 32.
    Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60:1788–1792.PubMedGoogle Scholar
  33. 33.
    Binder J. FMRI: Language mapping. Neurosurg Clin N Am. 1997;8:383–392.PubMedGoogle Scholar
  34. 34.
    Gaillard WD, Theodore WH. Mapping language in epilepsy with functional neuroimaging. Neuroscientist. 2000;6:391–401.Google Scholar
  35. 35.
    Hammeke TA, Bellgowan PSF, Binder JR. FMRI methodology: Cognitive function mapping. Adv Neurol. 2000;83:221–233.PubMedGoogle Scholar
  36. 36.
    Detre JA, Floyd TF. Functional MRi and its applications to the clinical neurosciences. Neuroscientist. 2001;7:64–79.PubMedGoogle Scholar
  37. 37.
    Binder JR, Achten E, Constable RT, Detre JA, Gaillard WD, Jack CR, et al. Functional MRI in epilepsy. Epilepsia. 2002;43(Suppl 1):51–63.Google Scholar
  38. 38.
    Carpentier A, Pugh KR, Westerveld M, et al. Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia. 2001;42:1241–1254.PubMedGoogle Scholar
  39. 39.
    Fernández G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003;60:969–975.PubMedGoogle Scholar
  40. 40.
    Kertesz A, Harlock W, Coates R. Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain Lang. 1979;8:34–50.PubMedGoogle Scholar
  41. 41.
    Porch BE, Collins M, Wertz RT, Friden TP. Statistical prediction of change in aphasia. J Speech Hear Res. 1980;23:312–321.PubMedGoogle Scholar
  42. 42.
    Selnes OA, Knopman DS, Niccum N, Rubens AB, Larson D. Computed tomographic scan correlates of auditory comprehension deficits in aphasia: A prospective recovery study. Ann Neurol. 1983;13:558–566.PubMedGoogle Scholar
  43. 43.
    Metter EJ, Jackson CA, Kempler D, Hanson WR. Temporoparietal cortex and the recovery of language comprehension in aphasia. Aphasiology. 1992;6:349–358.Google Scholar
  44. 44.
    Ferro JM. The influence of infarct location on recovery from global aphasia. Aphasiology. 1992;6:415–430.Google Scholar
  45. 45.
    Code C, Rowley D, Kertesz A. Predicting recovery from aphasia with connectionist networks: Preliminary comparisons with multiple regression. Cortex. 1994;30:527–532.PubMedGoogle Scholar
  46. 46.
    Karbe H, Kessler J, Herholz K, Fink GR, Heiss W-D. Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol. 1995;52:186–190.PubMedGoogle Scholar
  47. 47.
    Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Aphasia in acute stroke: Incidence, determinants, and recovery. Ann Neurol. 1995;38:659–666.PubMedGoogle Scholar
  48. 48.
    Cao Y, Vikingstad BS, George PK, Johnson AF, Welch KMA. Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke. 1999;30:2331–2340.PubMedGoogle Scholar
  49. 49.
    Thulborn KR, Carpenter PA, Just MA. Plasticity of language-related brain function during recovery from stroke. Stroke. 1999;30:749–754.PubMedGoogle Scholar
  50. 50.
    Calvert GA, Brammer MJ, Morris RG, Williams SCR, King N, Matthews PM. Using fMRI to study recovery from acquired dysphasia. Brain Lang. 2000;71:391–399.PubMedGoogle Scholar
  51. 51.
    Rosen HJ, Petersen SE, Linenweber MR, Snyder AZ, White DA, Chapman L, et al. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology. 2000;55:1883–1894.PubMedGoogle Scholar
  52. 52.
    Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature. 1996;382:66–69.PubMedGoogle Scholar
  53. 53.
    Demb JB, Boynton GM, Heeger DJ. Brain activity in visual cortex predicts individual differences in reading performance. PNAS. 1997;94:13363–13366.PubMedGoogle Scholar
  54. 54.
    Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, et al. Functional disruption in the organization of the brain for reading in dyslexia. PNAS. 1998;95:2636–2641.PubMedGoogle Scholar
  55. 55.
    Temple E, Deutsch GK, Poldrack RA, Miller SL, Tallal P, Merzenich MM, et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. PNAS. 2003;100:2860–2865.PubMedGoogle Scholar
  56. 56.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–589.PubMedGoogle Scholar
  57. 57.
    Wise R, Chollet F, Hadar U, Friston K, Hoffner E, Frackowiak R. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain. 1991;114:1803–1817.PubMedGoogle Scholar
  58. 58.
    Démonet J-F, Chollet F, Ramsay S, Cardebat D, Nespoulous J-L, Wise R, et al. The anatomy of phonological and semantic processing in normal subjects. Brain. 1992;115:1753–1768.PubMedGoogle Scholar
  59. 59.
    Binder JR, Price CJ. Functional imaging of language. In: Cabeza R, Kingstone A, editors. Handbook of Functional Neuroimaging of Cognition. Cambridge, MA: MIT Press; 2001:187–251.Google Scholar
  60. 60.
    Macleod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203.PubMedGoogle Scholar
  61. 61.
    Reicher GM. Perceptual recognition as a function of meaningfulness of stimulus material. J Exp Psychol. 1969;81:274–280.Google Scholar
  62. 62.
    Warren RM, Obusek CJ. Speech perception and phonemic restorations. Percept Psychophys. 1971;9:358–362.Google Scholar
  63. 63.
    Ganong WF. Phonetic categorization in auditory word perception. J Exp Psychol Hum Percept Perform. 1980;6:110–115.PubMedGoogle Scholar
  64. 64.
    Marslen-Wilson WD, Tyler LK. Central processes in speech understanding. Philos Trans R Soc London B Biol Sci. 1981;295:317–332.Google Scholar
  65. 65.
    Carr TH, McCauley C, Sperber RD, Parmalee CM. Words, pictures, and priming: On semantic activation, conscious identification, and the automaticity of information processing. J Exp Psychol Hum Percept Perform. 1982;8:757–777.PubMedGoogle Scholar
  66. 66.
    Marcel AJ. Conscious and unconscious perception: Experiments on visual masking and word recognition. Cognit Psychol. 1983;15:197–237.PubMedGoogle Scholar
  67. 67.
    Van Orden GC. A ROWS is a ROSE: Spelling, sound, and reading. Mem Cognit. 1987;15:181–198.PubMedGoogle Scholar
  68. 68.
    Burton MW, Baum SR, Blumstein SE. Lexical effects on phonetic categorization of speech: The role of acoustic structure. J Exp Psychol Hum Percept Perform. 1989;15:567–575.PubMedGoogle Scholar
  69. 69.
    Glaser WR. Picture naming. Cognition. 1992;42:61–105.PubMedGoogle Scholar
  70. 70.
    Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.PubMedGoogle Scholar
  71. 71.
    Buckner RL, Raichle ME, Petersen SE. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurosci. 1995;74:2163–2173.Google Scholar
  72. 72.
    Bookheimer SY, Zeffiro TA, Blaxton T, Gaillard T, Theodore W. Regional cerebral blood flow during object naming and word reading. Hum Brain Mapp. 1995;3:93–106.Google Scholar
  73. 73.
    Price CJ, Wise RSJ, Frackowiak RSJ. Demonstrating the implicit processing of visually presented words and pseudowords. Cereb Cortex. 1996;6:62–70.PubMedGoogle Scholar
  74. 74.
    Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. A neural basis for lexical retrieval. Nature. 1996;380:499–505.PubMedGoogle Scholar
  75. 75.
    Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T. Human brain language areas identified by functional MRI. J Neurosci. 1997;17:353–362.PubMedGoogle Scholar
  76. 76.
    James W. Principles of Psychology, vol. 1. New York: Dover Publications; 1890.Google Scholar
  77. 77.
    Hebb DO. The problem of consciousness and introspection. In: Adrian ED, Bremer F, Jasper HH, editors. Brain Mechanisms and Consciousness: A Symposium. Springfield, IL: Charles C. Thomas; 1954:402–421.Google Scholar
  78. 78.
    Miller GA, Galanter E, Pribram K. Plans and the Structure of Behavior. New York: Holt; 1960.Google Scholar
  79. 79.
    Pope KS, Singer JL. Regulation of the stream of consciousness: Toward a theory of ongoing thought. In: Schwartz GE, Shapiro D, editors. Consciousness and Self-Regulation. New York: Plenum Press; 1976:101–135.Google Scholar
  80. 80.
    Antrobus JS, Singer JL, Greenberg S. Studies in the stream of consciousness: Experimental enhancement and suppression of spontaneous cognitive processes. Percept Mot Skills. 1966;23:399–417.Google Scholar
  81. 81.
    Teasdale JD, Proctor L, Lloyd CA, Baddeley AD. Working memory and stimulus-independent thought: Effects of memory load and presentation rate. Eur J Cogn Psychol. 1993;5:417–433.Google Scholar
  82. 82.
    Révész G, editor. Thinking and Speaking: A symposium. Amsterdam: North Holland Publishing; 1954.Google Scholar
  83. 83.
    Weiskrantz L, editor. Thought without Language. Oxford: Clarendon; 1988.Google Scholar
  84. 84.
    Vygotsky LS. Thought and Language. New York: Wiley; 1962.Google Scholar
  85. 85.
    Karmiloff-Smith A. Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press; 1992.Google Scholar
  86. 86.
    Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, et al. Remembering the past: Two facets of episodic memory explored with positron emission tomography. Am J Psychiatry. 1995;152:1576–1585.PubMedGoogle Scholar
  87. 87.
    Shulman GL, Fiez JA, Corbetta M, Buckner RL, Meizin FM, Raichle ME, et al.y Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci. 1997;9:648–663.Google Scholar
  88. 88.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW. Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci. 1999;11:80–93.PubMedGoogle Scholar
  89. 89.
    Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull. 2001;54:287–298.PubMedGoogle Scholar
  90. 90.
    Raichle ME, McLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. PNAS. 2001;98:676–682.PubMedGoogle Scholar
  91. 91.
    Stark CE, Squire LR. When zero is not zero: The problem of ambiguous baseline conditions in fMRI. PNAS. 2001;98:12760–12766.PubMedGoogle Scholar
  92. 92.
    McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci. 2003;15:394–408.PubMedGoogle Scholar
  93. 93.
    Grabowski TJ, Damasio AR. Investigating language with functional neuroimaging. In: Toga AW, Mazziotta JC, editors. Brain Mapping: The Systems. San Diego, CA: Academic Press; 2000:425–461.Google Scholar
  94. 94.
    Binder JR. Wernicke aphasia: A disorder of central language processing. In: D’Esposito ME, editor. Neurological Foundations of Cognitive Neuroscience. Cambridge, MA: MIT Press; 2002:175–238.Google Scholar
  95. 95.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Springer JA, Kaufman JN, et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex. 2000;10:512–528.PubMedGoogle Scholar
  96. 96.
    Scott SK, Blank C, Rosen S, Wise RJS. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 2000;123:2400–2406.PubMedGoogle Scholar
  97. 97.
    Liebenthal E, Binder JR, Piorkowski RL, Remez RE. Short-term reorganization of auditory analysis induced by phonetic experience. J Cogn Neurosci. 2003;15:549–558.PubMedGoogle Scholar
  98. 98.
    Belin P, Zatorre RJ, Ahad P. Human temporal-lobe response to vocal sounds. Cogn Brain Res. 2002;13:17–26.Google Scholar
  99. 99.
    Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, Dehaene S. Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain. 2002;125:1054–1069.PubMedGoogle Scholar
  100. 100.
    Wise RSJ, Scott SK, Blank SC, Mummery CJ, Murphy K, Warburton EA. Separate neural subsystems within “Wernicke’s area”. Brain. 2001;124:83–95.PubMedGoogle Scholar
  101. 101.
    Mazoyer BM, Tzourio N, Frak V, Syrota A, Murayama N, Levrier O, et al. The cortical representation of speech. J Cogn Neurosci. 1993;5:467–479.Google Scholar
  102. 102.
    Price CJ, Wise RJS, Warburton EA, Moore CJ, Howard D, Patterson K, et al. Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain. 1996;119:919–931.PubMedGoogle Scholar
  103. 103.
    Zatorre RJ, Evans AC, Meyer E, Gjedde A. Lateralization of phonetic and pitch discrimination in speech processing. Science. 1992;256:846–849.PubMedGoogle Scholar
  104. 104.
    Mummery CJ, Ashburner J, Scott SK, Wise RJS. Functional neuroimaging of speech perception in six normal and two aphasic subjects. J Acoust Soc Am. 1999;106:449–457.PubMedGoogle Scholar
  105. 105.
    Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000;403:309–312.PubMedGoogle Scholar
  106. 106.
    Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Hyde JS. Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Cogn Brain Res. 1994;2:31–38.Google Scholar
  107. 107.
    Eulitz C, Elbert T, Bartenstein P, Weiller C, Müller SP, Pantev C. Comparison of magnetic and metabolic brain activity during a verb generation task. Neuroreport. 1994;6:97–100.PubMedGoogle Scholar
  108. 108.
    Warburton E, Wise RJS, Price CJ, Weiller C, Hadar U, Ramsay S, et al. Noun and verb retrieval by normal subjects. Studies with PET. Brain. 1996;119:159–179.PubMedGoogle Scholar
  109. 109.
    Ojemann JG, Buckner RL, Akbudak E, Snyder AZ, Ollinger JM, McKinstry RC, et al. Functional MRI studies of word-stem completion: Reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp. 1998;6:203–215.PubMedGoogle Scholar
  110. 110.
    Palmer ED, Rosen HJ, Ojemann JG, Buckner RL, Kelley WM, Petersen SE. An event-related fMRI study of overt and covert word stem completion. Neuroimage. 2001;14:182–193.PubMedGoogle Scholar
  111. 111.
    Thompson-Schill SL, D’Esposito M, Kan IP. Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron. 1999;23:513–522.PubMedGoogle Scholar
  112. 112.
    Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. PNAS. 1995;92:8135–8139.PubMedGoogle Scholar
  113. 113.
    Kanwisher N, Woods R, Iacoboni M, Mazziotta J. A locus in human extrastriate cortex for visual shape analysis. J Cogn Neurosci. 1996;91:133–142.Google Scholar
  114. 114.
    Grill-Spector K, Kushnir T, Edelman S, Avidian-Carmel G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron. 1999;24:187–203.PubMedGoogle Scholar
  115. 115.
    Martin A, Wiggs CL, Ungerleider LG, Haxby JV. Neural correlates of category-specific knowledge. Nature. 1996;379:649–652.PubMedGoogle Scholar
  116. 116.
    Price CJ, Moore CJ, Humphreys GW, Frackowiak RSJ, Friston KJ. The neural regions sustaining object recognition and naming. Proc R Soc London B. 1996;263:1501–1507.Google Scholar
  117. 117.
    Zelkowicz BJ, Herbster AN, Nebes RD, Mintun MA, Becker JT. An examination of regional cerebral blood flow during object naming tasks. J Int Neuropsychol Soc. 1998;4:160–166.PubMedGoogle Scholar
  118. 118.
    Murtha S, Chertkow H, Beauregard M, Evans A. The neural substrate of picture naming. J Cogn Neurosci. 1999;11:399–423.PubMedGoogle Scholar
  119. 119.
    Kiasawa M, Inoue C, Kawasaki T, Tokoro T, Ishii K, Ohyama M, et al. Functional neuroanatomy of object naming: A PET study. Graefes Arch Clin Exp Ophthalmol. 1996;234:110–115.Google Scholar
  120. 120.
    Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RSJ. Functional anatomy of a common semantic system for words and pictures. Nature. 1996;383:254–256.PubMedGoogle Scholar
  121. 121.
    Müller R-A, Kleinhans N, Courchesne E. Linguistic theory and neuroimaging evidence: an fMRI study of Broca’s area in lexical semantics. Neuropsychologia. In press.Google Scholar
  122. 122.
    Price CJ, Moore CJ, Humphreys GW, Wise RJS. Segregating semantic from phonological processes during reading. J Cogn Neurosci. 1997;9:727–733.Google Scholar
  123. 123.
    Mummery CJ, Patterson K, Hodges JR, Price CJ. Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci. 1998;10:766–777.PubMedGoogle Scholar
  124. 124.
    Chee MWL, O’Craven KM, Bergida R, Rosen BR, Savoy RL. Auditory and visual word processing studied with fMRI. Hum Brain Mapp. 1999;7:15–28.PubMedGoogle Scholar
  125. 125.
    Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE. Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cogn Neurosci. 2001;13:829–843.PubMedGoogle Scholar
  126. 126.
    Bavelier D, Corina D, Jezzard P, Padmanabhan S, Clark VP, Karni A, et al. Sentence reading: a functional MRI study at 4 tesla. J Cogn Neurosci. 1997;9:664–686.Google Scholar
  127. 127.
    Herbster AN, Mintun MA, Nebes RD, Becker JT. Regional cerebral blood flow during word and nonword reading. Hum Brain Mapp. 1997;5:84–92.PubMedGoogle Scholar
  128. 128.
    Indefrey P, Kleinschmidt A, Merboldt K-D, Krüger G, Brown C, Hagoort P, et al. Equivalent responses to lexical and nonlexical visual stimuli in occipital cortex: a functional magnetic resonance imaging study. Neuroimage. 1997;5:78–81.PubMedGoogle Scholar
  129. 129.
    Chee MW, Caplan D, Soon CS, Sriram N, Tan EWL, Thiel T, et al. Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron. 1999;23:127–137.PubMedGoogle Scholar
  130. 130.
    Pugh KR, Shaywitz BA, Shaywitz SE, Constable RT, Skudlarski P, Fulbright RK, et al. Cerebral organization of component processes in reading. Brain. 1996;119:1221–1238.PubMedGoogle Scholar
  131. 131.
    Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PSF, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122:2033–2045.PubMedGoogle Scholar
  132. 132.
    Pujol J, Deus J, Losilla JM, Capdevila A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999;52:1038–1043.PubMedGoogle Scholar
  133. 133.
    Vikingstad EM, George KP, Johnson AF, Cao Y. Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. J Neurol Sci. 2000;175:17–27.PubMedGoogle Scholar
  134. 134.
    Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward DB, Hammeke TA. Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology. 2002;59:238–244.PubMedGoogle Scholar
  135. 135.
    Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY. Noninvasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res. 2002;145:166–176.PubMedGoogle Scholar
  136. 136.
    Knecht S, Deppe M, Dräger B, Bobe L, Lohmann H, Ringelstein EB, et al. Language lateralization in healthy right-handers. Brain. 2000;123:74–81.PubMedGoogle Scholar
  137. 137.
    Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Skudlarski P, Fulbright RK, et al. Sex differences in the functional organization of the brain for language. Nature. 1995;373:607–609.PubMedGoogle Scholar
  138. 138.
    Price CJ, Moore CJ, Friston KJ. Getting sex into perspective. Neuroimage. 1996;3:S586.Google Scholar
  139. 139.
    Frost JA, Binder JR, Springer JA, Hammeke TA, Bellgowan PSF, Rao SM, et al. Language processing is strongly left lateralized in both sexes: Evidence from FMRI. Brain. 1999;122:199–208.PubMedGoogle Scholar
  140. 140.
    Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, et al. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123:2512–2518.PubMedGoogle Scholar
  141. 141.
    Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci. 1977;299:355–369.PubMedGoogle Scholar
  142. 142.
    Loring DW, Meador KJ, Lee GP, Murro AM, Smith JR, Flanigin HF, et al. Cerebral language lateralization: Evidence from intracarotid amobarbital testing. Neuropsychologia. 1990;28:831–838.PubMedGoogle Scholar
  143. 143.
    Grady CL, Maisog JM, Horwitz B, et al. Age-related changes in cortical blood flow activation during visual processing of faces and location. J Neurosci. 1994;14:1450–1462.PubMedGoogle Scholar
  144. 144.
    Grady CL, McIntosh AR, Bookstein F, Horwitz B, Rapoport SI, Haxby JV. Age-related changes in regional cerebral blood flow during working memory for faces. Neuroimage. 1998;8:409–425.PubMedGoogle Scholar
  145. 145.
    Woods RP, Dodrill CB, Ojemann GA. Brain injury, handedness, and speech lateralization in a series of amobarbital studies. Ann Neurol. 1988;23:510–518.PubMedGoogle Scholar
  146. 146.
    Risse GL, Gates JR, Fangman MC. A reconsideration of bilateral language representation based on the intracarotid amobarbital procedure. Brain Lang. 1997;33:118–132.Google Scholar
  147. 147.
    Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Jesmanowicz A, et al. Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol. 1995;52:593–601.PubMedGoogle Scholar
  148. 148.
    Cohen MS, Dubois RM. Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging. 1999;10:33–40.PubMedGoogle Scholar
  149. 149.
    Binder JR, Hammeke TA, Possing ET, Swanson SJ, Spanaki MV, Morris GL, et al. Reliability and validity of language dominance assessment with functional MRI. Neurology. 2001;56 (Suppl 3):A158.Google Scholar
  150. 150.
    Xiong J, Rao S, Gao JH, Woldorff M, Fox PT. Evaluation of hemispheric dominance for language using functional MRI: a comparison with positron emission tomography. Hum Brain Mapp. 1998;6:42–58.PubMedGoogle Scholar
  151. 151.
    Altenmüller DM, Kriechbaum W, Helber U, Moini S, Dichgans J, Petersen D. Cortical DC-potentials in identification of the language dominant hemisphere: linguistical and clinical aspects. Acta Neurochir (Wien). 1993;56 (Suppl.):20–33.Google Scholar
  152. 152.
    Khedr EM, Hamed E, Said A, Basahi J. Handedness and language cerebral lateralization. Eur J Appl Physiol. 2002;87:469–473.PubMedGoogle Scholar
  153. 153.
    Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W, et al. Assessment of hemispheric language lateralization: A comparison between fMRI and fTCD. J Cereb Blood Flow Metab. 2000;20:263–268.PubMedGoogle Scholar
  154. 154.
    Foundas AL, Leonard CM, Gilmore R, Fennell E, Heilman KM. Planum temporale asymmetry and language dominance. Neuropsychologia. 1994;32:1225–1231.PubMedGoogle Scholar
  155. 155.
    Chelune GJ. Using neuropsychological data to forecast postsurgical cognitive outcome. In: Lüders H, editor. Epilepsy Surgery. New York: Raven Press;1991:477–485.Google Scholar
  156. 156.
    Schwartz TH, Devinsky O, Doyle W, Perrine K. Preoperative predictors of anterior temporal language areas. J Neurosurg. 1998;89:962–970.PubMedGoogle Scholar
  157. 157.
    Hermann BP, Perrine K, Chelune GJ, Barr W, Loring DW, Strauss E, et al. Visual confrontation naming following left anterior temporal lobectomy: A comparison of surgical approaches. Neuropsychology. 1999;13:3–9.PubMedGoogle Scholar
  158. 158.
    Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp. 2001;13:199–212.PubMedGoogle Scholar
  159. 159.
    Hamberger MJ, Goodman RR, Perrine K, Tamny TR. Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology. 2001;56:56–61.PubMedGoogle Scholar
  160. 160.
    Hermann BP, Wyler AR, Somes G, Clement L. Dysnomia after left anterior temporal lobectomy without functional mapping: frequency and correlates. Neurosurgery. 1994;35:52–57.PubMedGoogle Scholar
  161. 161.
    Langfit JT, Rausch R. Word-finding deficits persist after left anterotemporal lobectomy. Arch Neurol. 1996;53:72–76.Google Scholar
  162. 162.
    Davies KG, Bell BD, Bush AJ, Hermann BP, Dohan FC, Jaap AS. Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia. 1998;39:407–419.PubMedGoogle Scholar
  163. 163.
    Bell BD, Davies KG, Hermann BP, Walters G. Confrontation naming after anterior temporal lobectomy is related to age of acquisition of the object names. Neuropsychologia. 2000;38:83–92.PubMedGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  • Jeffrey R. Binder
    • 1
  1. 1.Department of Neurology; and Language Imaging LaboratoryMedical College of WisconsinMilwaukeeUSA

Personalised recommendations