BOLD fMRI pp 119-159 | Cite as

Brain Mapping for Neurosurgery and Cognitive Neuroscience

  • Joy Hirsch


One of the primary goals of neural science is to understand the biological underpinnings of cognition. This goal is based on the assumption that cognitive events emerge from brain events and that behavior can be explained in terms of neural processes. Francis Crick referred to this as “the Astonishing Hypothesis.”1 According to this view, the biological principles that underlie cognition link the structure and function of the brain.


Superior Temporal Gyrus Precentral Gyrus Illusory Contour Bold Response Positron Emission Tomographic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter was written in collaboration with Sarah Callahan, a psycholinguistic student in my laboratory, who not only researched and provided essential original sources, but also was a partner in the development of the ideas and conceptual organization. Without her critical contributions, this chapter would not have emerged in print.


  1. 1.
    Crick F. The Astonishing Hypothesis: The Scientific Search for the Soul. New York: Charles Scribner’s Sons; 1994.Google Scholar
  2. 2.
    Dorland’s Illustrated Medical Dictionary. 27th ed. Philadelphia, PA: W.B. Saunders Co. (Harcourt Brace Jovanovich Inc.); 1988.Google Scholar
  3. 3.
    The American Heritage Dictionary of the English Language. 4th ed. Boston, MA: Houghton Mifflin Co.; 2000.Google Scholar
  4. 4.
    Neisser U. Cognitive Psychology. New York; Appleton: 1967.Google Scholar
  5. 5.
    Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science. 1994;264:1102–1105.PubMedCrossRefGoogle Scholar
  6. 6.
    Penfield W. The Mystery of the Mind. Princeton, NJ; Princeton University Press: 1975.Google Scholar
  7. 7.
    Sherrington R. J Physiol. 1890;11:85.PubMedGoogle Scholar
  8. 8.
    Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H215O. II. Implementation and validation.J Nucl Med. 1983;24:790–798.PubMedGoogle Scholar
  9. 9.
    Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex demonstrated by positron emission tomography.J Neurophysiol. 1984;51:1109–1120.PubMedGoogle Scholar
  10. 10.
    Peterson SE, Fox PT, Posner MI, Mintun M, Raichle ME. Postiron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1(2):153–170.CrossRefGoogle Scholar
  11. 11.
    Ogawa S, Lee T-M, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Gore JC, Principles and practice of functional MRI of the human brain. J Clin Invest. 2003;112:4–9.PubMedGoogle Scholar
  13. 13.
    George JS, Aine CJ, Mosher JC, Schmidt MD, Ranken DM, Schlitt HA Wood CC, Lewine JD, Sanders JA, Belliveau JW. Mapping function in the human brain with magneto encephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol. 1995;12:406–429.PubMedCrossRefGoogle Scholar
  14. 14.
    Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R. Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery. 1999;44(6):1249–1255.PubMedGoogle Scholar
  15. 15.
    Stapleton SR, Kiriakopoulos E, Mikulis D, Drake LM, Hoffman HJ, Humphreys R, Hwang P, Otsubo H, Holowka S, Logan W, Rutka JT. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26:68–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Atlas SW, Howard RS, Maldjian J, Alsop D, Detre JA, Listerud J, D’Esposito M, Judy KD, Zager E, Stecker M. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996;38(2):329–338.PubMedCrossRefGoogle Scholar
  17. 17.
    Latchaw RE, Xiaoping HU, Ugurbil K, Hall WA, Madison MT, Heros RC. Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery. 1995;37(4):619–625.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee CC, Jack CR Jr, Riederer SJ. Mapping of the central sulcus with functional MR: Active versus passive activation tasks. Neuroradiology. 1998;19:847–852.Google Scholar
  19. 19.
    Mueller WM, Yetkin FZ, Hammeke TA, Morris GL III, Swanson SJ, Reichert K, Cox, Haughton VM. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39(3):515–521.PubMedGoogle Scholar
  20. 20.
    Puce A, Constable T, Luby ML, Eng M, McCarthy G, Nobre AC, Spencer DD, Gore JC, Allison T. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995;83:262–270.PubMedCrossRefGoogle Scholar
  21. 21.
    Schulder M, Maldijian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, Carmel PW. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. Neurosurgery. 1998;89:412–418.CrossRefGoogle Scholar
  22. 22.
    Yousry TA, Schmid UD, Jassoy AG, Schmidt D, Eisener WE, Reulen HJ, Reiser MF, Lissner J. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology. 1995;195:23–29.PubMedGoogle Scholar
  23. 23.
    Debus J, Essig M, Schad LR, Wenz F, Baudendistel K, Knopp MV, Engenhart R, Lorenz WJ. Functional magnetic imaging in a stereotactic setup. Magn Reson Imaging. 1996;14(9):1007–1012.PubMedCrossRefGoogle Scholar
  24. 24.
    Fried I, Nenov VI, Ojemann SG, Woods RP. Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg. 1995;83:854–861.PubMedCrossRefGoogle Scholar
  25. 25.
    Chapman PH, Buchbinder BR, Cosgrove GR, Jiang HJ. Functional magnetic resonance imaging for cortical mapping in pediatric neurosurgery. Pediatr Neurosurg. 1995;23:122–126.PubMedCrossRefGoogle Scholar
  26. 26.
    Fandino J, Kollias S, Wieser G, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patters in patients with brain tumors involving the primary motor cortex. J Neurosurg. 1999;91:238–250.PubMedCrossRefGoogle Scholar
  27. 27.
    Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg. 1998;88:863–869.PubMedCrossRefGoogle Scholar
  28. 28.
    Herholz K, Reulen H, von Stockhausen H, Thiel A, Ilmberger J, Kessler J, Eisner W, Yousry TA, Heiss W. Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery. 1997;41(6):1253–1262.PubMedCrossRefGoogle Scholar
  29. 29.
    Hinke RM, Hu X, Stillman AE, Kim SG, Merkle H, Salmi R, Ugurbil K. Functional magnetic resonance imaging of Broca’s area during internal speech. NeuroReport. 1993;4:675–678.PubMedCrossRefGoogle Scholar
  30. 30.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW. Conceptual processing during the conscious resting state: A functional MRI study. J Cogn Neurosci. 1999;11(1):80–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Kollias SS, Landau K, Khan N, Golay X, Bernays R, Yonekawa Y, Valavanis A. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. Neurosurgery. 1998;89:780–790.CrossRefGoogle Scholar
  32. 32.
    Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995;15:3215–3230.PubMedGoogle Scholar
  33. 33.
    Hirsch J, Rodriguez-Moreno D, Kim KHS. Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci. 2001;13(3):1–16.CrossRefGoogle Scholar
  34. 34.
    Hirsch J, Ruge MI, Kim KHS, Correa DD, Victor JD, Relkin NR, Labar DR, Krol G, Bilsky MH, Souweidane MM, DeAngelis LM, Gutin PH. An integrated fMRI procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47(3):711–722.PubMedGoogle Scholar
  35. 35.
    Kaplan EF, Goodglass H, Weintraub S. The Boston naming test. 2nd ed. Philadelphia, PA: Lea & Febiger: 1983.Google Scholar
  36. 36.
    Dinner DS, Luders H, Lesser RP, Morris HH. Cortical generators of somatosensory evoked potentials to median nerve stimulation. Neurology. 1987;37:1141–1145.PubMedCrossRefGoogle Scholar
  37. 37.
    Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–970.PubMedCrossRefGoogle Scholar
  38. 38.
    Puce A. Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol. 1995;12:450–459.PubMedCrossRefGoogle Scholar
  39. 39.
    Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg. 1960;17:266–282.CrossRefGoogle Scholar
  40. 40.
    Ruge MI, Victor JD, Hosain S, Correa DD, Relkin NR, Tabar V, Brennan C, Gutin PH, Hirsch J. Concordance between functional magnetic resonance imaging and intraoperative language mapping. J Stereotact Funct Neurosurg. 1999;72:95–102.CrossRefGoogle Scholar
  41. 41.
    Kim KHS, Relkin NR, Lee K-M, Hirsch J. Distinct cortical areas associated with native and second languages. Nature. 1997;388:171–174.PubMedCrossRefGoogle Scholar
  42. 42.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. J Neurosurg. 1989;71:316–326.PubMedCrossRefGoogle Scholar
  43. 43.
    Friston KJ, Holmes AP, Price CJ, Büchel C, Worsley KJ. Multisubject fMRI studies and conjunction analysis. Neuroimage. 1999;10:385–396.PubMedCrossRefGoogle Scholar
  44. 44.
    Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118:115–128.PubMedCrossRefGoogle Scholar
  45. 45.
    Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain. New York; Thieme: 1988.Google Scholar
  46. 46.
    Friston KJ, et al. Human Brain Mapping. 1995;2:189.CrossRefGoogle Scholar
  47. 47.
    Mishkin M, Ungerleider LG. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res. 1982;6(1):57–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Buchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex. 1997;7(8):768–778.PubMedCrossRefGoogle Scholar
  49. 49.
    Mesulam M-M. From sensation to cognition. Brain. 1998;121:1013–1052.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim Y-H, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam M-M. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage. 1999;9:269–277.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith EE, Jonides J. Working memory: A view from neuroimaging. Cogn Psychol. 1997;33:5–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Leung H-C, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex. 2000;10:552–560.PubMedCrossRefGoogle Scholar
  53. 53.
    D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M. The neural basis of the central executive system of working memory. Nature. 1995;378:279–281.PubMedCrossRefGoogle Scholar
  54. 54.
    Adcock RA, Constable RT, Gore JC, Goldman-Rakic PS. Functional neuroanatomy of executive processes involved in dual-task performance. Proc Natl Acad Sci USA. 2000;97(7):3567–3572.PubMedCrossRefGoogle Scholar
  55. 55.
    Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll DC, Cohen JD, Forman SD, Dahl RE, Rapoport JL. A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. J Cogn Neurosci. 1997;9(6):835–847.CrossRefGoogle Scholar
  56. 56.
    Rosen BR, Buckner RL, Dale AM. Event-related functional MRI: Past, present, and future. Proc Natl Acad Sci USA. 1998;95:773–780.PubMedCrossRefGoogle Scholar
  57. 57.
    Opitz B, Mecklinger A, Friederici AD, von Cramon DY. The functional neuroanatomy of novelty processing: Integrating ERP and fMRI results. Cerebr Cortex. 1999;9(4):379–391.CrossRefGoogle Scholar
  58. 58.
    Kruggel F, Herrmann CS, Wiggins CJ, von Cramon DY. Hemodynamic and electroencephalographic responses to illusory figures: Recording of the evoked potentials during functional MRI. Neuroimage. 2001;14:1327–1336.PubMedCrossRefGoogle Scholar
  59. 59.
    Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition. 2001;79:1–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Damasio AR. Investigating the biology of consciousness. Phil Trans R Soc Lond B Biol Sci. 1998;353:1879–1882.CrossRefGoogle Scholar
  61. 61.
    Dehaene S, Kerszberg M, Changeux JP. A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA. 1998;95(24):14529–14534, November 24.PubMedCrossRefGoogle Scholar
  62. 62.
    Binder JR, Price CJ. Functional imaging of language. In: Cabeza R, Kingstone A, eds. Handbook of Functional Neuroimaging of Cognition. Cambridge, MA: MIT Press. pp. 187–251.Google Scholar
  63. 63.
    Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Cogn Neurosci. 1998;18(1):411–418.Google Scholar
  64. 64.
    Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature. 1998;393:467–470.PubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  • Joy Hirsch
    • 1
  1. 1.Departments of Radiology, Neuroscience, and Psychology; and Program for Imaging & Cognitive SciencesColumbia UniversityNew YorkUSA

Personalised recommendations