Computational Epitope Mapping

  • Matthew N. Davies
  • Darren R. Flower


Despite its unequivocal benefits to humankind, vaccine design and development has always been an inherently laborious and a largely empirical process; the unfortunate lack of a rational basis for vaccinology has hitherto stymied the commercial exploitation of vaccine discovery and also the deployment of vaccination as the principal, global instrument of public health provision. Immunoinformatics offers a plethora of programs and techniques that have the potential to simplify greatly the process of discovering vaccines. These techniques can assist in the identification of immunogenic epitopes that might be overlooked by conventional experimentation.


Major Histocompatibility Complex Major Histocompatibility Complex Molecule Epitope Prediction Major Histocompatibility Complex Allele Bayesian Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Areschoug T, Gordon S (2008) Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib Microbiol 15:45–60CrossRefPubMedGoogle Scholar
  2. Arnold PY, La Gruta NL, Miller T, Vignali KM et al (2002) The majority of immunogenic epitopes generate CD4 + T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol 169:739–749PubMedGoogle Scholar
  3. Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybridomics 22:229–234CrossRefGoogle Scholar
  4. Bhasin M, Raghava GPS (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195–3201CrossRefPubMedGoogle Scholar
  5. Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC Class I restricted T-cell epitopes. J Biosci 32:31–42CrossRefGoogle Scholar
  6. Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC Class I restricted T-cell epitopes. J Biosci 32:31–42CrossRefGoogle Scholar
  7. Blythe MJ, Flower DR (2005) Benchmarking B-cell epitope prediction: underperformance of existing methods. Protein Sci 14:246–248CrossRefPubMedGoogle Scholar
  8. Burden FR, Winkler DA (2005) Predictive Bayesian neural network models of MHC Class II peptide binding. J Mol Graph Model 23:481–489CrossRefPubMedGoogle Scholar
  9. Buus S et al (2003) Sensitive quantitative predictions of peptide- MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384CrossRefPubMedGoogle Scholar
  10. Chang HT, Liu CH, Pai TW (2008) Estimation and extraction of B-cell linear epitopes predicted by mathematical morphology approaches. J Mol Recognit 21:431–441CrossRefPubMedGoogle Scholar
  11. Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov Today 12:389–395CrossRefPubMedGoogle Scholar
  12. Deavin AJ, Auton TR, Greaney PJ (1996) Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. Mol Immunol 33:145–155CrossRefPubMedGoogle Scholar
  13. de Diego JL, Gerold G, Zychlinsky A (2007) Sensing, presenting, and regulating PAMPs. Ernst Schering Found Symp Proc 3:83–95CrossRefPubMedGoogle Scholar
  14. De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 11:203–209CrossRefPubMedGoogle Scholar
  15. De Groot AS, Berzofsky JA (2004) From genome to vaccine – new immunoinformatics tools for vaccine design. Methods 34:425–428CrossRefPubMedGoogle Scholar
  16. Donnes P, Elofsson A (2002) Prediction of MHC Class I binding peptides using SVMHC. BMC Bioinform 3:25–38CrossRefGoogle Scholar
  17. Dönnes P, Kohlbacher O (2005) Integrated modeling of the major events in the MHC Class I antigen processing pathway. Protein Sci 14:2132–2140CrossRefPubMedGoogle Scholar
  18. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for Class II MHCs. J Immunol 174:7085–7095PubMedGoogle Scholar
  19. Doytchinova IA, Flower DR (2006) Modeling the peptide-T-cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique. J Med Chem 49(7):2193–2199CrossRefPubMedGoogle Scholar
  20. Doytchinova IA, Flower DR (2007a) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4CrossRefGoogle Scholar
  21. Doytchinova IA, Flower DR (2007b) Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine 25:856–866CrossRefPubMedGoogle Scholar
  22. Doytchinova IA, Guan P, Flower DR (2004) Identifiying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323PubMedGoogle Scholar
  23. Doytchinova I, Hemsley S, Flower DR (2004) Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation. J Immunol 173(11):6813–6819PubMedGoogle Scholar
  24. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T-cell epitope prediction. BMC Bioinform 7:131CrossRefGoogle Scholar
  25. El-Manzalawy Y, Dobbs D, Honavar V (2008a) On evaluating MHC-II binding peptide prediction methods. PLoS ONE 3:e3268CrossRefPubMedGoogle Scholar
  26. El-Manzalawy Y, Dobbs D, Honavar V (2008b) Predicting linear B-cell epitopes using string kernels. J Mol Recogn 21:243–255CrossRefGoogle Scholar
  27. Flower DR (2003) Towards in silico prediction of immunogenic epitopes. Trends Immunol 24:667–674CrossRefPubMedGoogle Scholar
  28. Flower DR (2008) Bioinformatics for vaccinology. WileyCrossRefGoogle Scholar
  29. Flower DR, Doytchinova IA (2002) Immunoinformatics and the prediction of immunogenicity. Appl Bioinform 1:167–176Google Scholar
  30. Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-Class II molecules: more confusion than conclusion. J Proteome Res 7:154–163CrossRefPubMedGoogle Scholar
  31. Guan P et al (2006) MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl Bioinform 5:55–61CrossRefGoogle Scholar
  32. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567CrossRefPubMedGoogle Scholar
  33. Hattotuwagama CK, Toseland CP, Guan P, Taylor DJ, Hemsley SL, Doytchinova IA, Flower DR (2006) Toward prediction of Class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. J Chem Inf Model 46(3):1491–1502CrossRefPubMedGoogle Scholar
  34. Huang YX, Bao YL, Guo SY, Wang Y et al (2008) Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis. BMC Bioinform 9:538CrossRefGoogle Scholar
  35. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216CrossRefPubMedGoogle Scholar
  36. Jardetzky TS et al (1996) Crystallographic analysis of endogenous peptides associated with HLADR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci USA 93:734–738CrossRefPubMedGoogle Scholar
  37. Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14:341–358CrossRefPubMedGoogle Scholar
  38. Jung G et al (2001) From combinatorial libraries to MHC ligand motifs, T-cell superagonists and antagonists. Biologicals 29:179–181CrossRefPubMedGoogle Scholar
  39. Knapp B, Omasits U, Frantal S, Schreiner W (2009) A critical cross-validation of high throughput structural binding prediction methods for pMHC. J Comput Aided Mol Des 23:301–307Google Scholar
  40. Korber BT et al (2005) HIV Molecular Immunology 2005. Los Alamos National Laboratory, Theoretical Biology and BiophysicsGoogle Scholar
  41. Kornbluth RS, Stone GW (2006) Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J Leukoc Biol 80:1084–1102CrossRefPubMedGoogle Scholar
  42. Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33(Web Server issue):W168–171CrossRefPubMedGoogle Scholar
  43. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2CrossRefPubMedGoogle Scholar
  44. Larsen MV et al (2005) An integrative approach to CTL epitope prediction. A combined algorithm integrating MHC-I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303CrossRefPubMedGoogle Scholar
  45. Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC Class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303CrossRefPubMedGoogle Scholar
  46. Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinform 9(Suppl 12):S22CrossRefGoogle Scholar
  47. Lin ML, Zhan Y, Villadangos JA, Lew AM (2008) The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol 86:353–362CrossRefPubMedGoogle Scholar
  48. Loureiro J, Ploegh HL (2006) Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv Immunol 92:225–305CrossRefPubMedGoogle Scholar
  49. Matzinger P (2002) An innate sense of danger. Ann NY Acad Sci 961:341–342Google Scholar
  50. Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinform 22:1088–1095CrossRefGoogle Scholar
  51. Moreau V, Fleury C, Piquer D, Nguyen C et al (2008) PEPOP: computational design of immunogenic peptides. BMC Bioinform 9:71CrossRefGoogle Scholar
  52. Nielsen M et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Prot Sci 12:1007–1017CrossRefGoogle Scholar
  53. Nielsen M et al (2007) Prediction of MHC Class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8:238CrossRefGoogle Scholar
  54. Nielsen M, Lundegaard C, Blicher T, Peters B et al (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107CrossRefPubMedGoogle Scholar
  55. Noguchi H et al (2002) Hidden Markov model-based prediction of antigenic peptides that interact with MHC Class II molecules. J Biosci Bioeng 94:264–270PubMedGoogle Scholar
  56. Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological process with the stabilized matrix method. BMC Bioinform 6:132CrossRefGoogle Scholar
  57. Peters B, Bui HH, Frankild S, Nielson M et al (2006) A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2:e65CrossRefPubMedGoogle Scholar
  58. Ponomarenko J, Bui HH, Li W, Fusseder N et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514CrossRefGoogle Scholar
  59. Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64CrossRefPubMedGoogle Scholar
  60. Rammensee H et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenet 50:213–219CrossRefGoogle Scholar
  61. Reche PA et al (2002) Prediction of MHC Class I binding peptides using profile motifs. Hum Immunol 63:701–709CrossRefPubMedGoogle Scholar
  62. Rubinstein ND, Mayrose I, Pupko T. (2009) A machine-learning approach for predicting B-cell epitopes. Mol. Immunol 46:840–847Google Scholar
  63. Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48CrossRefPubMedGoogle Scholar
  64. Saxova P, Buus S, Brunak S, Kesmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15(7):781–787CrossRefPubMedGoogle Scholar
  65. Serruto D, Rappuoli R. (2006) Post-genomic vaccine development. FEBS Lett 580:2985–2992CrossRefPubMedGoogle Scholar
  66. Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinform 17:1236–1237CrossRefGoogle Scholar
  67. Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinform 19:1009–1014CrossRefGoogle Scholar
  68. Swain MT et al (2001) An automated approach to modelling Class II MHC alleles and predicting peptide binding. In: Bourbakis NS (ed) Proc 2nd IEEE Int Symp Biol.-Inform Biomed Engin. IEEE Computer Society Press, pp. 81–88Google Scholar
  69. Vivona S, Gardy JL, Ramachandran S, Brinkman FS et al (2008) Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol 26:190–200CrossRefPubMedGoogle Scholar
  70. Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8:607–618CrossRefPubMedGoogle Scholar
  71. Ya L, Davydov I, Tonevitsky AG (2009) published in Molekulyarnaya Biologiya 43(1):166–174Google Scholar
  72. Zhang H, Lundegaard C, Nielsen M (2009) Pan-specific MHC Class I predictors: a benchmark of HLA Class I pan-specific prediction methods. Bioinform 25:83–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Matthew N. Davies
    • 1
  • Darren R. Flower
    • 1
  1. 1.SGDP Centre, Institute of PsychiatryLondonUnited Kingdom

Personalised recommendations