Bioinformatics of Microbial Sequences

  • Phil Giffard


The pioneering work of Carl Woese demonstrated that comparison of biological sequences is the key to inferring evolutionary relationships and population structures in the microbial biosphere. These studies clearly showed that the great majority of the biodiversity on this planet is microbial. Since the determination of the first bacterial genome sequence in 1995, the genomics revolution has added great detail to the understanding of bacterial evolution and gene flow. One issue that is subject to on-going research and debate is whether lateral gene transfer has an effect on population structures, and whether evolutionary relationships between bacteria may be best regarded as a tree or a network. Recent efforts to sequence genomes from multiple strains within individual bacterial species have revealed that in general any given bacterial clone contains only a subset of the gene content of the species. A typical bacterial genome is composed of a core set of genes that are shared by all strains in the species, and accessory genes that are mobile, and often confer clinically significant properties. The immense and rapidly expanding quantity of genome sequence information has made it possible for DNA-based diagnostic and typing methods to be designed with precisely understood performances in relation to the population structure of the species or the likely gene content of an analytical sample.


Lateral Gene Transfer Variable Number Tandem Repeat Clonal Complex MLST Database Lateral Gene Transfer Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6(6):431–440PubMedGoogle Scholar
  2. Agius P, Kreiswirth B et al (2007) Typing Staphylococcus aureus using the spaspa gene and novel distance measures. IEEE/ACM Trans Comput Biol Bioinform 4(4):693–704CrossRefPubMedGoogle Scholar
  3. Bisharat N, Crook DW et al (2004) Hyperinvasive neonatal group B streptococcus has arisen from a bovine ancestor. J Clin Microbiol 42(5):2161–2167CrossRefPubMedGoogle Scholar
  4. Bishop EJ, Shilton C et al (2007) Necrotizing fasciitis in captive juvenile Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the animal and human literature. Epidemiol Infect 135(8):1248–1255.CrossRefPubMedGoogle Scholar
  5. Bohnsack JF, Whiting A et al (2008) Population structure of invasive and colonizing strains of Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999. J Clin Microbiol 46(4):1285–1291.CrossRefPubMedGoogle Scholar
  6. Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59(1):27–40.CrossRefPubMedGoogle Scholar
  7. Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213.CrossRefPubMedGoogle Scholar
  8. Crick FH (1962) The genetic code. Sci Am 207:6–74CrossRefGoogle Scholar
  9. Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet Evol 8(6):747–763CrossRefPubMedGoogle Scholar
  10. Deurenberg RH, Vink C et al (2007) The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13(3):222–235CrossRefPubMedGoogle Scholar
  11. Didelot X, Darling A et al (2009) Inferring genomic flux in bacteria. Genome Res 19(2):306–317CrossRefPubMedGoogle Scholar
  12. Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175(3) 1251–1266CrossRefPubMedGoogle Scholar
  13. Diep BA, Palazzolo-Ballance AM et al (2008) Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 3(9):e3198CrossRefPubMedGoogle Scholar
  14. Dingle KE, Colles FM et al (2005a) Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J Clin Microbiol 43(1):340–347CrossRefPubMedGoogle Scholar
  15. Dingle KE, Colles FM et al (2001b) Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 39(1):14–23CrossRefPubMedGoogle Scholar
  16. Dingle KE, Van Den Braak N et al (2001) Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barre and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. J Clin Microbiol 39(9):3346–3349CrossRefPubMedGoogle Scholar
  17. Enright MC, Day NP et al (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38(3):1008–1015PubMedGoogle Scholar
  18. Enright MC, Spratt BG et al (2001) Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 69(4):2416–2427CrossRefPubMedGoogle Scholar
  19. Fearnhead P, Smith NG et al (2005) Analysis of recombination in Campylobacter jejuni from MLST population data. J Mol Evol 61(3):333–340CrossRefPubMedGoogle Scholar
  20. Feil EJ, Cooper JE et al (2003) How clonalclonal is Staphylococcus aureus? J Bacteriol 185(11):3307–3316CrossRefPubMedGoogle Scholar
  21. Feil EJ, Enright MC et al (2000a) Estimating the relative contributions of mutation and recombination to clonalclonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae. Res Microbiol 151(6):465–469CrossRefPubMedGoogle Scholar
  22. Feil EJ, Holmes EC et al (2001) Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 98(1):182–187CrossRefPubMedGoogle Scholar
  23. Feil EJ, Li BC et al (2004) eBURSTeBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186(5):1518–1530CrossRefPubMedGoogle Scholar
  24. Feil EJ, Smith JM et al (2000b) Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154(4):1439–1450PubMedGoogle Scholar
  25. Fleischmann RD, Adams MD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512CrossRefPubMedGoogle Scholar
  26. Fraser C, Alm EJ et al (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323(5915):741–746CrossRefPubMedGoogle Scholar
  27. Fraser C, Hanage WP et al (2007) Recombination and the nature of bacterial speciation. Science 315(5811):476–480CrossRefPubMedGoogle Scholar
  28. French NP, Midwinter A et al (2009) Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl Environ Microbiol 75(3):779–783CrossRefPubMedGoogle Scholar
  29. Ghosh R, Nair GB et al (2008) Epidemiological study of Vibrio cholerae using variable number of tandem repeats. FEMS Microbiol Lett 288(2):196–201CrossRefPubMedGoogle Scholar
  30. Gillet Y, Issartel B et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359(9308):753–759CrossRefPubMedGoogle Scholar
  31. Grissa I, Bouchon P et al (2008) On-line resources for bacterial micro-evolution studies using MLVAMLVA or CRISPR typing. Biochimie 90(4):660–668CrossRefPubMedGoogle Scholar
  32. Hanage WP, Fraser C et al (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361(1475):1917–1927CrossRefPubMedGoogle Scholar
  33. Haubold B, Hudson RR (2000) LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Anal Bioinform 16(9):84784–84788Google Scholar
  34. Hery-Arnaud G, Bruant G et al (2007) Mobile genetic elements provide evidence for a bovine origin of clonalclonal complex 17 of Streptococcus agalactiae. Appl Environ Microbiol 73(14):4668–4672CrossRefPubMedGoogle Scholar
  35. Holder M, Lewis PO (2003) Phylogeny estimation: traditional and BayesianBayesian approaches. Nat Rev Genet 4(4):275–284CrossRefPubMedGoogle Scholar
  36. Honsa E, Fricke T et al (2008) Assignment of Streptococcus agalactiae isolates to clonalclonal complexes using a small set of single nucleotide polymorphisms. BMC Microbiol 8:140CrossRefPubMedGoogle Scholar
  37. Hugenholtz P, Goedel BM et al (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774PubMedGoogle Scholar
  38. Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinform 14(1):68–73CrossRefGoogle Scholar
  39. Huygens F, Inman-Bamber J et al (2006) Staphylococcus aureus genotyping using novel real-time PCR formats. J Clin Microbiol 44(10):3712–3719CrossRefPubMedGoogle Scholar
  40. Jiang LW, Lin KL et al (2008) OGtreeOGtree: a tool for creating genome trees of prokaryotes based on overlapping genes. Nucleic Acids Res 36(Web Server issue):W475–W480CrossRefPubMedGoogle Scholar
  41. Jones N, Bohnsack JF et al (2003) Multilocus sequence typing system for group B streptococcus. J Clin Microbiol 41(6):2530–2536CrossRefPubMedGoogle Scholar
  42. Katayama Y, Ito T et al (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44(6):1549–1555CrossRefPubMedGoogle Scholar
  43. Keim P, Pearson T et al (2008) Microbial forensics: DNA fingerprinting of Bacillus anthracis (anthrax). Anal Chem 80(13):4791–4799CrossRefPubMedGoogle Scholar
  44. Keim P, Van Ert MN et al (2004) Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol 4(3):205–213CrossRefPubMedGoogle Scholar
  45. Kennedy AD, Otto M et al (2008) Epidemic community-associated methicillin-resistant Staphylo­coccus aureus: recent clonalclonal expansion and diversification. Proc Natl Acad Sci USA 105(4):1327–1332CrossRefPubMedGoogle Scholar
  46. Kim K, Cheon E et al (2005) Determination of the most closely related bacillus isolates to Bacillus anthracis by multilocus sequence typing. Yale J Biol Med 78(1):1–14PubMedGoogle Scholar
  47. Kondo Y, Ito T et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51(1):264–724CrossRefPubMedGoogle Scholar
  48. Kong F, Gilbert GL (2006) Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) - a practical epidemiological and diagnostic tool. Nat Protoc 1(6):2668–2680CrossRefPubMedGoogle Scholar
  49. Kong F, Ma L et al (2005) Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J Med Microbiol 54(Pt 12):1133–1138CrossRefPubMedGoogle Scholar
  50. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36(21):6688–6719CrossRefPubMedGoogle Scholar
  51. Kumar S, Nei M et al (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306CrossRefPubMedGoogle Scholar
  52. Labandeira-Rey M, Couzon F, et al (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315(5815):1130–1133CrossRefPubMedGoogle Scholar
  53. Larkin MA, Blackshields G et al (2007) Clustal W and Clustal X version 2.0. Bioinform 23(21):2947–2948CrossRefGoogle Scholar
  54. Lin FY, Whiting W et al (2006) Phylogenetic lineages of invasive and colonizing strains of serotype III group B Streptococci from neonates: a multicenter prospective study. J Clin Microbiol 44(4):1257–1261CrossRefPubMedGoogle Scholar
  55. Lina, G., Durand G et al (2006) Staphylococcal chromosome cassette evolution in Staphylococcus aureus inferred from ccr gene complex sequence typing analysis. Clin Microbiol Infect 12(12):1175–1184CrossRefPubMedGoogle Scholar
  56. Maiden MC, Bygraves JA et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95(6):3140–3145CrossRefPubMedGoogle Scholar
  57. Mardis ER (2008) Next-generation DNA sequencing methods. Ann Rev Genomics Hum Genet 9:387–402CrossRefGoogle Scholar
  58. Margulies M, Egholm M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380PubMedGoogle Scholar
  59. Melles DC, Schouls L et al (2009) High-throughput typing of Staphylococcus aureus by amplified fragment length polymorphism (AFLPAFLP) or multi-locus variable number of tandem repeat analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 28(1):39–45CrossRefPubMedGoogle Scholar
  60. Mellmann A, Weniger T et al (2008) Characterization of clonalclonal relatedness among the natural population of Staphylococcus aureus strains by using spaspa sequence typing and the BURPBURP (based upon repeat patterns) algorithm. J Clin Microbiol 46(8):2805–2808CrossRefPubMedGoogle Scholar
  61. Mellmann A, Weniger T et al (2007) Based Upon Repeat Pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spaspa polymorphisms. BMC Microbiol 7:98CrossRefPubMedGoogle Scholar
  62. Monecke S, Berger-Bachi B et al (2007) Comparative genomics and DNA array-based genotyping of pandemic Staphylococcus aureus strains encoding Panton-Valentine leukocidin. Clin Microbiol Infect 13(3):236–249CrossRefPubMedGoogle Scholar
  63. Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Ann Rev Genet 30:371–403CrossRefPubMedGoogle Scholar
  64. Nubel U, Roumagnac P et al (2008) Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 105(37):14130–14135CrossRefPubMedGoogle Scholar
  65. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26(1–2):74–86CrossRefPubMedGoogle Scholar
  66. Oliveira IC, de Mattos MC et al (2006) Genetic relatedness between group B streptococci originating from bovine mastitis and a human group B Streptococcus type V cluster displaying an identical pulsed-field gel electrophoresis pattern. Clin Microbiol Infect 12(9):887–893CrossRefPubMedGoogle Scholar
  67. Pearson T, Busch JD et al (2004) Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci USA 101(37):13536–13541CrossRefPubMedGoogle Scholar
  68. Read TD, Salzberg SL et al (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296(5575):2028–2033CrossRefPubMedGoogle Scholar
  69. Relman DA (1993) The identification of uncultured microbial pathogens. J Infect Dis 168(1):1–8PubMedGoogle Scholar
  70. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform 19(12):1572–1574CrossRefGoogle Scholar
  71. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  72. Sanger F, Nicklen S et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467CrossRefPubMedGoogle Scholar
  73. Sheppard SK, McCarthy ND et al (2008) Convergence of Campylobacter species: implications for bacterial evolution. Science 320(5873):237–239CrossRefPubMedGoogle Scholar
  74. Smith JM, Smith NH et al (1993) How clonalclonal are bacteria? Proc Natl Acad Sci USA 90(10):4384–4388CrossRefPubMedGoogle Scholar
  75. Spratt BG, Hanage WP et al (2001) The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol 4(5):602–606.CrossRefPubMedGoogle Scholar
  76. Staley JT (2006) The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci 361(1475):1899–1909CrossRefPubMedGoogle Scholar
  77. Stephens AJ, Huygens F et al (2006) Methicillin-resistant Staphylococcus aureus genotyping using a small set of polymorphisms. J Med Microbiol 55(Pt 1):43–51CrossRefPubMedGoogle Scholar
  78. Sun Y, Kong F et al (2005) Comparison of a 3-set genotyping system with multilocus sequence typing for Streptococcus agalactiae (Group B Streptococcus). J Clin Microbiol 43(9):4704–4707CrossRefPubMedGoogle Scholar
  79. Tettelin H, Riley D et al (2008) Comparative genomics: the bacterial pan-genomepan-genome. Curr Opin Microbiol 11(5):472–477CrossRefPubMedGoogle Scholar
  80. Tourasse NJ, Helgason E, et al (2006) The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101(3):579–93CrossRefPubMedGoogle Scholar
  81. Tristan A, Bes M et al (2007) Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 13(4):594–600CrossRefPubMedGoogle Scholar
  82. Turner KM, Feil EJ (2007) The secret life of the multilocus sequence type. Int J Antimicrob Agents 29(2):129–135CrossRefPubMedGoogle Scholar
  83. Van Ert MN, Easterday WR et al (2007a) Global genetic population structure of Bacillus anthracis. PLoS One 2(5):e461CrossRefPubMedGoogle Scholar
  84. Van Ert MN, Easterday WR et al (2007b) Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J Clin Microbiol 45(1): 47–53CrossRefPubMedGoogle Scholar
  85. Vilas-Boas GT, Peruca AP et al (2007) Biology and taxonomy of Bacillus cereus , Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol 53(6):673–687CrossRefPubMedGoogle Scholar
  86. Watson JD, Crick FH (1953). The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131PubMedGoogle Scholar
  87. Wilson DJ, Gabriel E et al (2009) Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Mol Biol Evol 26(2):385–397CrossRefPubMedGoogle Scholar
  88. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–371PubMedGoogle Scholar
  89. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97(15):8392–8396CrossRefPubMedGoogle Scholar
  90. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090CrossRefPubMedGoogle Scholar
  91. Yamasaki O, Kaneko J et al (2005) The association between Staphylococcus aureus strains carrying panton-valentine leukocidin genes and the development of deep-seated follicular infection. Clin Infect Dis 40(3):381–385CrossRefPubMedGoogle Scholar
  92. Yang Z, Rannala B (1997) BayesianBayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14(7):717–724PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Phil Giffard
    • 1
  1. 1.Menzies School of Health ResearchDarwinAustralia

Personalised recommendations