Skip to main content

Temporal and Spatial Clustering of Bacterial Genotypes

  • Chapter
  • First Online:
  • 1582 Accesses

Abstract

Genotypic characterization of bacterial isolates provides valuable information for epidemiological surveillance and microbial population biology. In particular, the ability to discern clonal relatedness among isolates can be used to identify links and sites of transmission, some of which are not easily traced using conventional contact investigation. The spatial and temporal clustering of isolates that share the same or closely related genotypes can add further value to the use of molecular fingerprinting in the detection and management of infectious disease outbreaks. This chapter reviews and discusses the use of both spatio-temporal clustering and bacterial genotypes in public health biosurveillance and includes examples of temporal and spatial clustering of bacterial genotypes that allow for the integration of bacterial genotyping into public health decision making.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brookmeyer R, Stroup D (2004) Monitoring the health of populations: statistical methods for public health surveillance. Oxford University Press, Oxford

    Google Scholar 

  • Buckeridge D (2007) Outbreak detection through automated surveillance: A review of the determinants of detection. J Biomed Inform 40:370–379

    Article  PubMed  Google Scholar 

  • Buckeridge D, Burkom H et al. (2005) Algorithms for rapid outbreak detection: a research synthesis. J Biomed Inform 38:99–113

    Article  PubMed  Google Scholar 

  • Burkom H, Murphy S (2007) Data classification for selection of temporal alerting methods for biosurveillance. In: Zeng D et al. (eds) Intelligence and Security Information: Biosurveillance. Lecture Notes in Computer Science 4506. Springer, pp. 59–70

    Google Scholar 

  • Chan M-S, Maiden M et al. (2001) Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Clayton D, Kaldor J (1987) Empirical Bayes estimates of age-standardised relative risks for use in disease mapping. Biometrics 43:671–681

    Article  CAS  PubMed  Google Scholar 

  • Crawford J, Braden C et al. (2002) National Tuberculosis Genotyping and Surveillance Network: design and methods. Emerg Infect Dis 8:1192–1196

    PubMed  Google Scholar 

  • Cuzick J, Edwards R (1990) Spatial clustering for inhomogeneous populations. J R Stat Soc Series B 52:73–104

    Google Scholar 

  • Edgerton J, Burkom H et al. (2007) Modifications to spatial scan statistics for estimated probabilities at fine-resolution in highly skewed spatial distributions. Adv Dis Surv 4:89

    Google Scholar 

  • Elliot P, Cuzick J, et al. (2000) Geographical and environmental epidemiology: methods for Small area studies. Oxford University Press, Oxford

    Google Scholar 

  • Frisen M (2003) Statistical surveillance: optimality and methods. Int Stat Rev 71:403–434

    Article  Google Scholar 

  • Frisen M, Demare J (1991) Optimal surveillance. Biometrika 78:271–290

    Google Scholar 

  • Gallego B, Sintchenko V et al. (2009) Biosurveillance of emerging biothreats using scalable genotype clustering. J Biomed Inform 42:66–73

    Article  PubMed  Google Scholar 

  • Harvey A (1993) Time series models. The MIT Press, Boston

    Google Scholar 

  • Hawkins D, Olwell D (1998) Cumulative sum charts and charting for quality improvement. Springer, New York

    Google Scholar 

  • Howard S, Burkom YE 2A, Feldman 1J, Lin1 A (2004) Role of data aggregation in biosurveillance detection strategies with applications from ESSENCE. MMWR Morb Mortal Wkly Rep 53(Suppl):67–73

    Google Scholar 

  • Kelsall J, Diggle P (1998) Spatial variation in risk of disease: a nonparametric binary regression approach. J R Stat Soc Series C 47:559–573

    Article  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496

    Article  Google Scholar 

  • Kulldorff M (2001) Prospective time-periodic geographical disease surveillance using a scan statistic. J R Stat Soc Series A 164:61–72

    Article  Google Scholar 

  • Kulldorff M, Heffernan R et al. (2005) A space-time permutation scan statistic for disease outbreak detection. PLoS Med 2:e59

    Article  PubMed  Google Scholar 

  • Kulldorff M, Mostashari F et al. (2007) Multivariate scan statistics for disease surveillance. Stat Med 26:1824–1833

    Article  PubMed  Google Scholar 

  • Lawson A (2001) Statistical methods in spatial epidemiology. Wiley, London

    Google Scholar 

  • Lawson A, Denison D (2002) Spatial cluster modelling: an overview. Spatial Cluster Modelling. CRC Press, New York

    Book  Google Scholar 

  • LeSage J, Banerjee S et al. (2009) Spatial statistics: methods, models & computation. Comput Stat Data Anal 53:2781–2785

    Article  Google Scholar 

  • Lindstedt B, Vardund T et al. (2004) Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. J Microbiol Methods 59:163–172

    Article  CAS  PubMed  Google Scholar 

  • McNabb S, Kammerer J et al. (2004) Added epidemiologic value to tuberculosis prevention and control of the investigation of clustered genotypes of Mycobacterium tuberculosis isolates. Am J Epidemiol 160:589–597

    Article  PubMed  Google Scholar 

  • Naus J (1965) The distribution of the size of the maximum cluster of points on a line. J Am Stat Assoc 60:532–538

    Article  Google Scholar 

  • Neill D, Moore A (2004) Rapid detection of significant spatial clusters. In: Proceedings of the 10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp 256–265

    Google Scholar 

  • Overhage J, Suico J, et al. (2001) Electronic laboratory reporting: barriers, solutions and findings. J Public Health Manag Pract 7:60–66

    CAS  PubMed  Google Scholar 

  • Panackal A, Mikanatha N, et al. (2002) Automatic electronic laboratory-based reporting of notifiable infectious diseases at a large health system. Emerg Infect Dis 8:685–691

    PubMed  Google Scholar 

  • Potthoff R, Whittinghill M (1966) Testing for homogeneity. II. The Poisson distribution. Biometrika 53:183–190

    CAS  PubMed  Google Scholar 

  • Roberts SW (2000) Control chart tests based on geometric moving averages. Technometrics 42(1):97–101

    Google Scholar 

  • Shmueli G (2005) Wavelet-based monitoring in modern biosurveillance. Robert H Smith School Research Paper No RHS-06–002 Available at SSRN: http://ssrncom/abstract=902878

  • Shmueli G, Fienberg S (2005) Current and potential statistical methods for monitoring multiple data streams for biosurveillance. In: Alyson G, Wilson D, Olwell A (eds) Statistical methods in counterterrorism: game theory, modeling, syndromic surveillance, and biometric authentication. Springer, New York

    Google Scholar 

  • Sintchenko V, Iredell JR, et al. (2007) Genomic profiling of pathogens for disease management and surveillance. Nat Microbiol Rev 5:464–470

    Article  CAS  Google Scholar 

  • Sonesson C (2007) A CUSUM framework for detection of space-time disease clusters using scan statistics. Stat Med 26:4770–4789

    Article  PubMed  Google Scholar 

  • Sonesson C, Bock D (2003) A review and discussion of prospective statistical surveillance in public health. J R Stat Soc 166:5–21

    Article  Google Scholar 

  • Song C, Kulldorff M (2003) Power evaluation of disease clustering tests. Int J Health Geogr 2:1–8

    Article  Google Scholar 

  • Tango T (1995) A class of tests for detecting “general” and “focused” clustering of rare diseases. Stat Med 14:2323–2334

    Article  CAS  PubMed  Google Scholar 

  • Tauxe RV (2006) Molecular subtyping and the transformation of public health. Foodborne Pathog Dis 3:4–8

    Article  CAS  PubMed  Google Scholar 

  • Torpdahl M, Sorensen G et al. (2007) Tandem repeat analysis for surveillance of human Salmonella typhimurium Infections. Emerg Infect Dis 13:388–395

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Moore A et al. (2006) Handbook of biosurveillance. Elsevier Academic Press

    Google Scholar 

  • Williamson GD, Weatherby HG (1999) A monitoring system for detecting aberrations in public health surveillance reports. Stat Med 18:3283–3298

    Article  CAS  PubMed  Google Scholar 

  • Wong W, Moore A et al. (2002) Rule-based anomaly pattern detection for detecting disease outbreaks. AAAI-02. Edmonton, Alberta, pp 217–223

    Google Scholar 

  • Wong W, Moore A et al. (2003) What’s strange about recent events? J Urban Health 80:66–75

    Google Scholar 

Download references

Acknowledgments

The author acknowledges substantial contributions from Qinning Wang, Gwendolyn L Gilbert, Vitali Sintchenko and Peter Howard of the Centre for Infectious Diseases and Microbiology, Institute of Clinical Pathology and Medical Research, Sydney West Area Health Service and The University of Sydney. This work was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gallego, B. (2010). Temporal and Spatial Clustering of Bacterial Genotypes. In: Sintchenko, V. (eds) Infectious Disease Informatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1327-2_18

Download citation

Publish with us

Policies and ethics