Skip to main content

Information Integration for Terrorist or Criminal Social Networks

  • Chapter
  • First Online:
Security Informatics

Part of the book series: Annals of Information Systems ((AOIS,volume 9))

Abstract

Social network analysis discovers knowledge embedded in the structure of social networks, which is useful for intelligence and law enforcement force in investigation. However, individual agency usually has part of the complete terrorist or criminal social network and therefore some crucial knowledge could not be extracted. Sharing information between different agencies will make such a social network analysis more effective, unfortunately the concern of privacy preservation usually prohibits the sharing of sensitive information. There is always a trade-off between the degree of privacy and the degree of utility in information sharing. Several approaches have been proposed to resolve such dilemma in sharing data from different relational tables. However, there is only limited amount of work on sharing social networks from different sources and yet trying to minimize the reduction on the degree of privacy. The work on privacy preservation of social network data relies on anonymity and perturbation. These techniques are developed for the purpose of data publishing, but ignore the utility of the published data on social network analysis and the integration of social networks from multiple sources. In this chapter, we propose a sub-graph generalization approach for information sharing and privacy preservation of terrorist or criminal social networks. The objectives are sharing the insensitive and generalized information to support social network analysis but preserving the privacy at the same time. Our experiment shows that such an approach is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal G, Feder T, Kenthapadi K, Khuller S, Panigrahy R, Thomas D, and Zhu A (2006) Achieving Anonymity via Clustering. In: Proceedings of PODS. June 26–28, Chicago, IL.

    Google Scholar 

  2. Backstrom L, Dwork C, and Kleinberg J (2007) Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In: Proceedings of the 16th International WWW'07 Banff, Alberta.

    Google Scholar 

  3. Baird Z, Barksdale J, and Vatis M (2003) Creating a Trusted Network for Homeland Security. Markle Foundation.

    Google Scholar 

  4. Baird Z and Barksdale J (2006) Mobilizing Information to Prevent Terrorism: Accelerating Development of a Trusted Information Sharing Environment. Markle Foundation.

    Google Scholar 

  5. Best C, Piskorski J, Pouliquen B, Steinberger R, and Tanev H (2008) Automating Event Extraction for the Security Domain. Intelligence and Security Informatics-Techniques and Applications. Editors: Chen H, Yang CC, Berlin (Germany): Springer Verlag, p. 17–43.

    Google Scholar 

  6. Caruson K, Macmanus SA, Khoen M, and Watson TA (2005) Homeland Security Preparedness: The Rebirth of Regionalism. Publius 35(1): 143–189.

    Google Scholar 

  7. Friedmann RR and Cannon WJ (2005) Homeland Security and Community Policing: Competing or Complementing Public Safety Policies. Journal of Homeland Security and Emergency Management 4(4): 1–20.

    Google Scholar 

  8. Hay M, Miklau G, Jensen D, Weis P, and Srivastava S (2007) Anonymizing Social Networks. Technical Report 07-19. University of Massachusetts, Amherst.

    Google Scholar 

  9. Liu K and Terzi E (2008) Towards Identity Anonymization on Graphs. In: ACM SIGMOD'08. Vancouver, BC, Canada: ACM Press.

    Google Scholar 

  10. Machanavajjhala A, Gehrke J, Kifer D, and Venkitasubramaniam M (2006) l-Diversity: Privacy Beyond k-Anonymity. In: Proceedings of the 22nd International Conference on Data Engineering, Atlanta, GA.

    Google Scholar 

  11. Samarati P (2001) Protecting Respondents’ Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13(6): 1010–1027.

    Article  Google Scholar 

  12. Sweeney L (2000) Uniqueness of Simple Demographics in the US Population. Technical Report. Carnegie Mellon University.

    Google Scholar 

  13. Sweeney L (2002) k-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty Fuzziness Knowledge-Based Systems 10(5): 557–570.

    Article  MATH  MathSciNet  Google Scholar 

  14. Thacher D (2005) The Local Role in Homeland Security. Law & Society 39(3): 557–570.

    Google Scholar 

  15. Thuraisingham B (1994) Security Issues for Federated Databases Systems. Computers and Security, North Holland, December.

    Google Scholar 

  16. Thuraisingham, B (2008) Assured Information Sharing: Technologies, Challenges and Directions. Intelligence and Security Informatics-Techniques and Applications. Editors: Chen H, Yang CC, Berlin (Germany): Springer Verlag, p. 1–15.

    Google Scholar 

  17. Wong RC, Li J, Fu A, and Wang K (2006) (α,k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing. In: Proceedings of SIGKDD. August 20–23, Philadelphia, PA.

    Google Scholar 

  18. Xiao X and Tao Y (2006) Personalized Privacy Preservation. In: Proceedings of SIGMOD. June 27–29, Chicago, IL.

    Google Scholar 

  19. Yang CC, Liu N, and Sageman M (2006) Analyzing the Terrorist Social Networks with Visualization Tools. In: Proceedings of the IEEE International Conference on Intelligence and Security Informatics. May 23–24, San Diego, CA.

    Google Scholar 

  20. Yang CC and Sageman M (2009) Analysis of Terrorist Social Networks with Fractal Views. Journal of Information Science 35(3): 299–320.

    Google Scholar 

  21. Yang CC and Ng TD (2007) Terrorism and Crime Related Weblog Social Network: Link, Content Analysis and Information Visualization. In: Proceedings of the IEEE International Conference on Intelligence and Security Informatics. May 23–24, New Brunswick, NJ.

    Google Scholar 

  22. Ying X and Wu X (2008) Randomizing Social Networks: A Spectrum Preserving Approach. In: SIAM International Conference on Data Mining (SDM'08). Atlanta, GA.

    Google Scholar 

  23. Zheleva E and Getoor L (2007) Preserving the Privacy of Sensitive Relationships in Graph Data. In: First ACM SIGKDD International Workshop on Privacy. Security, and Trust in KDD (PinKDD'07), San Jose, CA.

    Google Scholar 

  24. Zhou B and Pei J (2008) Preserving Privacy in Social Networks against Neighborhood Attacks. In: IEEE International Conference on Data Engineering, Atlanta, GA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, C.C., Tang, X. (2010). Information Integration for Terrorist or Criminal Social Networks. In: Yang, C., Chau, M., Wang, JH., Chen, H. (eds) Security Informatics. Annals of Information Systems, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1325-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1325-8_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1324-1

  • Online ISBN: 978-1-4419-1325-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics