Just MIP it!

  • Matteo Fischetti
  • Andrea Lodi
  • Domenico Salvagnin
Part of the Annals of Information Systems book series (AOIS, volume 10)


Modern Mixed-Integer Programming (MIP) solvers exploit a rich arsenal of tools to attack hard problems. It is idely accepted by the OR community that the solution of very hard MIPs can take advantage from the solution of a series of time-consuming auxiliary Linear Programs (LPs) intended to enhance the performance of the overall MIP solver. For instance, auxiliary LPs may be solved to generate powerful disjunctive cuts, or to implement a strong branching policy. Also well established is the fact that finding good-quality heuristic MIP solutions often requires a computing time that is just comparable to that needed to solve the LP relaxations. So, it makes sense to think of a new generation of MIP solvers where auxiliary MIPs (as opposed to LPs) are heuristically solved on the fly, with the aim of bringing the MIP technology under the chest of the MIP solver itself. This leads to the idea of “translating into a MIP model” (MIPping) some crucial decisions to be taken within a MIP algorithm (How to cut? How to improve the incumbent solution? Is the current node dominated?). In this paper we survey a number of successful applications of the above approach.


Mixed Integer Mixed Integer Linear Program Valid Inequality Incumbent Solution Dominance Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Future and Emerging Technologies unit of the EC (IST priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and by MiUR, Italy.


  1. 1.
    T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization, 4:77–86, 2007.CrossRefGoogle Scholar
  2. 2.
    T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters, 34:361–372, 2006. Problems available at Scholar
  3. 3.
    E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsystem problem, IISs and IIS-hypergraphs. Mathematical Programming, 95:533–554, 2003.CrossRefGoogle Scholar
  4. 4.
    E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE: A new heuristic for pure 0–1 programs. Operations Research, 49:207–225, 2001.CrossRefGoogle Scholar
  5. 5.
    E. Balas and C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming. Management Science, 26:86–96, 1980.CrossRefGoogle Scholar
  6. 6.
    E. Balas and M. Perregaard. Lift-and-project for mixed 0-1 programming: Recent progress. Discrete Applied Mathematics, 123:129–154, 2002.CrossRefGoogle Scholar
  7. 7.
    E. Balas and A. Saxena. Optimizing over the split closure. Mathematical Programming, 113:219–240, 2008.CrossRefGoogle Scholar
  8. 8.
    E. Balas, S. Schmieta, and C. Wallace. Pivot and shift — a mixed integer programming heuristic. Discrete Optimization, 1:3–12, 2004.CrossRefGoogle Scholar
  9. 9.
    R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.Google Scholar
  10. 10.
    P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected Chvátal–Gomory cuts for mixed integer linear programs. Mathematical Programming, 113:241–257, 2008.CrossRefGoogle Scholar
  11. 11.
    A. Caprara and A.N. Letchford. On the separation of split cuts and related inequalities. Mathematical Programming, 94:279–294, 2002.CrossRefGoogle Scholar
  12. 12.
    J.W. Chinneck. Fast heuristics for the maximum feasible subsystem problem. INFORMS Journal on Computing, 13:210–223, 2001.CrossRefGoogle Scholar
  13. 13.
    V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics, 5:305–337, 1973.CrossRefGoogle Scholar
  14. 14.
    G. Codato and M. Fischetti. Combinatorial Benders cuts. In D. Bienstock and G. Nemhauser, editors, Integer Programming and Combinatorial Optimization, IPCO X, volume 3064 of Lecture Notes in Computer Science, pages 178–195. Springer, 2004.Google Scholar
  15. 15.
    W. Cook, R. Kannan, and A. Schrijver. Chvatal closures for mixed integer programming problems. Mathematical Programming, 47:155–174, 1990.CrossRefGoogle Scholar
  16. 16.
    G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical Programming, 112:3–44, 2008.CrossRefGoogle Scholar
  17. 17.
    G. Cornuéjols and Y. Li. On the rank of mixed 0,1 polyhedra. Mathematical Programming, 91:391–397, 2002.CrossRefGoogle Scholar
  18. 18.
    E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.CrossRefGoogle Scholar
  19. 19.
    S. Dash, O. Günlük, and A. Lodi. On the MIR closure of polyhedra. In M. Fischetti and D.P. Williamson, editors, Integer Programming and Combinatorial Optimization, IPCO XII, volume 4513 of Lecture Notes in Computer Science, pages 337–351. Springer, 2007.Google Scholar
  20. 20.
    S. Dash, O. Günlük, and A. Lodi. MIR closures of polyhedral sets. Mathematical Programming, DOI 10.1007/s10107-008-0225-x, 2008.Google Scholar
  21. 21.
    Double-Click sas. personal communication, 2001.Google Scholar
  22. 22.
    J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer programming. Journal of Heuristics, 13:471–503, 2007.CrossRefGoogle Scholar
  23. 23.
    F. Eisenbrand. On the membership problem for the elementary closure of a polyhedron. Combinatorica, 19:297–300, 1999.CrossRefGoogle Scholar
  24. 24.
    M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming, 104:91–104, 2005.CrossRefGoogle Scholar
  25. 25.
    M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2003.CrossRefGoogle Scholar
  26. 26.
    M. Fischetti and A. Lodi. MIPping Closures: An instant survey. Graphs and Combinatorics, 23:233–243, 2007.CrossRefGoogle Scholar
  27. 27.
    M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical Programming, 110:3–20, 2007.CrossRefGoogle Scholar
  28. 28.
    M. Fischetti and A. Lodi. Repairing MIP infeasibility through local branching. Computers & Operations Research, 35:1436–1445, 2008.CrossRefGoogle Scholar
  29. 29.
    M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem. Networks, 44:61–72, 2004.CrossRefGoogle Scholar
  30. 30.
    M. Fischetti and P. Toth. A New Dominance Procedure for Combinatorial Optimization Problems. Operations Research Letters, 7:181–187, 1988.CrossRefGoogle Scholar
  31. 31.
    J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities. ORSA Journal on Computing, 2:61–63, 1990.Google Scholar
  32. 32.
    F. Glover and M. Laguna. General purpose heuristics for integer programming – part I. Journal of Heuristics, 2:343–358, 1997.CrossRefGoogle Scholar
  33. 33.
    F. Glover and M. Laguna. General purpose heuristics for integer programming – part II. Journal of Heuristics, 3:161–179, 1997.CrossRefGoogle Scholar
  34. 35.
    F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.Google Scholar
  35. 35.
    R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64:275–278, 1958.CrossRefGoogle Scholar
  36. 36.
    R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The Rand Corporation, 1960.Google Scholar
  37. 37.
    M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, 1988.Google Scholar
  38. 38.
    P. Hansen, N. Mladenović, and D. Urosevic. Variable neighborhood search and local branching. Computers & Operations Research, 33:3034–3045, 2006.CrossRefGoogle Scholar
  39. 39.
    F.S. Hillier. Efficient heuristic procedures for integer linear programming with an interior. Operations Research, 17:600–637, 1969.CrossRefGoogle Scholar
  40. 40.
    T. Ibaraki, T. Ohashi, and F. Mine. A heuristic algorithm for mixed-integer programming problems. Mathematical Programming Study, 2:115–136, 1974.Google Scholar
  41. 41.
    ILOG S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual, 2007.
  42. 42.
    G.W. Klau. personal communication, 2002.Google Scholar
  43. 43.
    A. Løkketangen. Heuristics for 0-1 mixed-integer programming. In P.M. Pardalos and M.G.C. Resende, editors, Handbook of Applied Optimization, pages 474–477. Oxford University Press, 2002.Google Scholar
  44. 44.
    A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems using tabu search. European Journal of Operational Research, 106:624–658, 1998.CrossRefGoogle Scholar
  45. 45.
    F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–90, 2002.CrossRefGoogle Scholar
  46. 46.
    S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, 1990.Google Scholar
  47. 47.
    A.J. Miller. personal communication, 2003.Google Scholar
  48. 48.
    N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations Research, 24:1097–1100, 1997.CrossRefGoogle Scholar
  49. 49.
    J.L. Nazareth. The homotopy principle and algorithms for linear programming. SIAM Journal on Optimization, 1:316–332, 1991.CrossRefGoogle Scholar
  50. 50.
    G. Nemhauser and L. Wolsey. A recursive procedure to generate all cuts for 0-1 mixed integer programs. Mathematical Programming, 46:379–390, 1990.CrossRefGoogle Scholar
  51. 51.
    C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, 1982.Google Scholar
  52. 52.
    D. Pisinger. Where are the hard knapsack problems? Computers & Operations Research, 32:2271–2284, 2005.CrossRefGoogle Scholar
  53. 53.
    E. Rothberg. personal communication, 2002.Google Scholar
  54. 54.
    D. Salvagnin. A dominance procedure for integer programming. Master’s thesis, University of Padua, October 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Matteo Fischetti
    • 1
  • Andrea Lodi
    • 2
  • Domenico Salvagnin
    • 3
  1. 1.DEI, Università di PadovaPaduaItaly
  2. 2.DEIS, Università di BolognaBolognaItaly
  3. 3.DMPA, Università di PadovaPaduaItaly

Personalised recommendations