Transient Laser Behavior

  • Orazio Svelto


In this chapter, we will consider a few cases where the pump rate and/or cavity losses are time dependent. We will also consider situations in which a nonlinear optical element, such as a saturable absorber, is inserted in the laser cavity, where the non-linearity leads to the laser departing from stable cw operation. For these various cases we are thus dealing with transient laser behavior. The transient cases to be considered can be separated into two categories: (i) Cases, such as relaxation oscillations, Q-switching, gain switching and cavity dumping, where, ideally, a single mode laser is involved and which can be described by a rate equation treatment. (ii) Cases where many modes are involved, e.g. mode-locking, and for which a different treatment needs to be considered. This requires a description in terms of either the fields of all oscillating modes (frequency domain description) or in terms of a self-consistent circulating pulse within the cavity (time domain description).


Photon Number Laser Cavity Saturable Absorber Gain Medium Population Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Statz and G. de Mars, Transients and Oscillation Pulses in Masers, in Quantum Electronics, ed. C. H. Townes (Columbia University Press, New York 1960) p. 530.Google Scholar
  2. 2.
    R. Dunsmuir, Theory of Relaxation Oscillations in Optical Masers, J. Electron. Control, 10, 453–458 (1961).Google Scholar
  3. 3.
    D. F. Nelson and W. S. Boyle, A Continuously Operating Ruby Optical Maser, Appl. Optics, 1, 181 (1962).CrossRefADSGoogle Scholar
  4. 4.
    N. B. Abraham, P. Mandel, and L. M. Narducci, Dynamical Instabilities and Pulsations in Lasers, in Progress in Optics, Vol. XXV , ed. by E. Wolf (North-Holland, Amsterdam, 1988), pp 3–167.Google Scholar
  5. 5.
    M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974).Google Scholar
  6. 6.
    C. L. Tang, H. Statz, and G. de Mars, Spectral Output and Spiking Behavior of Solid-State Lasers, J. Appl. Phys. 34, 2289–2295 (1963).CrossRefADSGoogle Scholar
  7. 7.
    K. Otsuka et al., Alternate Time Scale in Multimode Lasers, Phys. Rev., 46, 1692–1695 (1992).CrossRefADSGoogle Scholar
  8. 8.
    R. W. Hellwarth, Control of Fluorescent Pulsations, in Advances in Quantum Electronics ed. by J. R. Singer (Columbia University Press, New York, 1961), pp 334–341.Google Scholar
  9. 9.
    W. Koechner, Solid-State Laser Engineering, Fourth Edition, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1996) Chap. 8.Google Scholar
  10. 10.
    A. Yariv, Optical Electronics, fourth ed. (Saunders College Publ., Fort Worth, 1991), Chap. 12.Google Scholar
  11. 11.
    W. R. Sooy, The Natural Selection of Modes in a Passive Q-Switched Laser, Appl. Phys. Lett. 7, 36–37 (1965).CrossRefADSGoogle Scholar
  12. 12.
    W. G. Wagner and B. A. Lengyel, Evolution of the Giant Pulse in a Laser, J. Appl. Phys. 34, 2040–2046 (1963).CrossRefADSGoogle Scholar
  13. 13.
    W. Koechner, Solid-State Laser Engineering, Vol. 1, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1976) Chap. 11, adapted from Fig. 11.23.Google Scholar
  14. 14.
    L. W. Casperson, Analytical Modeling of Gain-Switched Lasers. I. Laser Oscillators, J. Appl. Phys., 47, 4555–4562 (1976).Google Scholar
  15. 15.
    A. E. Siegman, Lasers, (Oxford University Press, Oxford, 1986) Chap. 27 and 28.Google Scholar
  16. 16.
    Reference 15, Section 27.5.Google Scholar
  17. 17.
    D.J. Kuizenga and A.E. Siegman, FM and AM Mode Locking of the Homogenous Laser-Part I: Theory, IEEE J. Quantum Electr. QE-6, 694–708 (1970).Google Scholar
  18. 18.
    H. Haus, A Theory of Forced Mode-Locking, IEEE J. Quantum Electr., QE-11, 323–330 (1975).Google Scholar
  19. 19.
    H. Haus, Theory of Mode Locking with a Fast Saturable Absorber, J. Appl. Phys., 46, 3049–3058 (1975).CrossRefADSGoogle Scholar
  20. 20.
    U. Keller, Ulrafast All-Solid-State Laser Technology, Appl. Phys. B, 58, 347–363 (1994).CrossRefADSGoogle Scholar
  21. 21.
    D. E. Spence, P. N. Kean, W. Sibbett, 60-fs Pulse Generation from a Self-mode-Locked Ti:Sapphire Laser, Opt. Letters, 16, 42–44 (1991).CrossRefADSGoogle Scholar
  22. 22.
    M. Piché, Beam Reshaping and Self-Mode-Locking in Nonlinear Laser Resonators, Opt. Commun., 86, 156–158 (1991).CrossRefADSGoogle Scholar
  23. 23.
    G. H. C. New, Pulse Evolution in Mode-Locked Quasi-Continuous Lasers, IEEE J. Quantum Electron., QE-10, 115–124 (1974).Google Scholar
  24. 24.
    G. P. Agrawaal, Nonlinear Fiber Optics, second edition (Academic Press, San Diego 1995) Section 3.3.Google Scholar
  25. 25.
    R. L. Fork, O. E. Martinez, and J. P. Gordon, Negative Dispersion Using Pairs of Prisms, Opt. Letters, 9, 150–152 (1984).CrossRefADSGoogle Scholar
  26. 26.
    R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, Chirped Multilayer Coatings for Broadband Dispersion Control in Femtosecond Lasers, Opt. Letters, 19, 201–203 (1994).CrossRefADSGoogle Scholar
  27. 27.
    Reference 26, Chapter 5.Google Scholar
  28. 28.
    H. A. Haus, J. G. Fujimoto, E. P. Ippen, Structures for Additive Pulse Mode Locking, J. Opt. Soc. Am. B, 8, 2068–2076 (1991).CrossRefADSGoogle Scholar
  29. 29.
    C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, Ultrabroadband Femtosecond Lasers, IEEE J. Quantum Electron., QE-30, 1100–1114 (1994).Google Scholar
  30. 30.
    J. A. Valdmanis, R. L. Fork, J. P. Gordon, Generation of Optical Pulses as Short as 27 Femtosecond Directly from a Laser Balancing Self-Phase Modulation, Group-Velocity Dispersion, Saturable Absorption, and Gain Saturation, Opt. Letters, 10, 131–133 (1985).CrossRefADSGoogle Scholar
  31. 31.
    U. Keller et al., Semiconductor Saturable Absorber Mirrors (SESAMs) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers, J. Select. Topics Quantum Electronics, Dec 1996.Google Scholar
  32. 32.
    H. A. Haus, Parameter Ranges for cw Passive Modelocking, IEEE J. Quantum Electron., QE-12, 169–176 (1976).Google Scholar
  33. 33.
    F. X. Kärtner et al., Control of Solid-State Laser Dynamics by Semiconductor Devices, Opt. Engineering, 34, 2024–2036 (1995).CrossRefADSGoogle Scholar
  34. 34.
    R. L. Fork, I. Greene, and C. V. Shank, Generation of Optical Pulses Shorter than 0.1 ps by Colliding Pulse Mode Locking, Appl. Phys. Letters, 38, 671–672, (1991).Google Scholar
  35. 35.
    G. Cerullo, S. De Silvestri, V. Magni, Self-Starting Kerr Lens Mode-Locking of a Ti:Sapphire Laser, Opt. Letters, 19, 1040–1042 (1994).CrossRefADSGoogle Scholar
  36. 36.
    A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, R. Szipöcs, Sub-10-fs Mirror-Controlled Ti:Sapphire Laser, Opt. Letters, 20, 602–604 (1995).CrossRefADSGoogle Scholar
  37. 37.
    I. D. Jung et al., Self-Starting 6.5-fs Pulses from a Ti:Sapphire Laser, Opt. Letters, 22, 1009–1011 (1997).Google Scholar
  38. 38.
    Reference [9], Section 8.6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Orazio Svelto
    • 1
  1. 1.Dipto. FisicaPolitecnico di MilanoMilanoItaly

Personalised recommendations