Continuous Wave Laser Behavior

  • Orazio Svelto


In previous chapters, we have discussed several features of the components that make up a laser. These are the laser medium itself, whose interaction with an e.m. wave was considered in Chaps. 2 and 3, the passive optical resonator (Chap. 5) and the pumping system (Chap. 6). In this chapter we will make use of results from these earlier chapters to develop the theoretical background required to describe the continuous wave, c.w., laser behavior. The case of transient laser behavior will be considered in the next chapter. The theory developed here uses the so-called rate-equation approximation and the laser equations are derived on the basis of a simple notion that there should be a balance between the total atoms undergoing a transition and total number of photons which are being created or annihilated (1, 2). This theory has the advantage of providing a rather simple and intuitive picture of laser behavior. Furthermore, it gives sufficiently accurate results for most practical purposes. For a more refined treatment one should use either the semiclassical approach (in which the matter is quantized while the e.m. radiation is treated classically, i.e., through Maxwell’s equations) or the full quantum electrodynamics approach (in which both matter and radiation are quantized). We refer the reader elsewhere for these more advanced treatments (3).


Pump Power Cavity Length Lower Laser Level Laser Level Pump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    H. Statz and G. de Mars, Transients and Oscillation Pulses in Masers, in Quantum Electronics, ed. by C.H. Townes (Columbia University Press, New York, 1960), pp. 530–537Google Scholar
  2. [2]
    R. Dunsmuir, Theory of Relaxation Oscillations in Optical Masers, J. Electron. Control 10, 453–458 (1961)Google Scholar
  3. [3]
    M. Sargent, M.O. Scully, and W.E. Lamb, Laser Physics (Addison-Wesley, London, 1974)Google Scholar
  4. [4]
    R. H. Pantell and H.E. Puthoff, Fundamentals of Quantum Electronics, (Wiley, New York, 1969), Chap. 6, Sect. 6.4.2Google Scholar
  5. [5]
    W. W. Rigrod, Saturation Effects in High-Gain Lasers, J. Appl. Phys. 36, 2487–2490 (1965)CrossRefADSGoogle Scholar
  6. [6]
    L. W. Casperson, Laser Power Calculations: Sources of Error, Appl. Opt. 19, 422–431 (1980)CrossRefADSGoogle Scholar
  7. [7]
    W. Koechner, Solid-State Laser Engineering, Vol. 1, Springer Series in Optical Sciences, fourth edition (Springer-Verlag, Berlin, 1996), Chap. 3, adapted from Fig. 3.21Google Scholar
  8. [8]
    Reference (7), Chap. 3, Fig. 3.22Google Scholar
  9. [9]
    D. Findlay and R. A. Clay, The Measurement of Internal Losses in 4-Level Lasers, Phys. Lett. 20, 277–278 (1966)CrossRefADSGoogle Scholar
  10. [10]
    Private communication, Istituto di Ricerca per le Tecnologie Meccaniche, Vico Canavese, TorinoGoogle Scholar
  11. [11]
    M. C. Fowler, Quantitative Analysis of the Dependence of CO2 Laser Performance on Electrical Discharge Properties, Appl. Phys. Lett. 18, 175 (1971)CrossRefADSGoogle Scholar
  12. [12]
    E. Hoag et al., Performance Characteristics of a 10 kW Industrial CO2 Laser System, Appl. Opt. 13, 1959 (1974)CrossRefADSGoogle Scholar
  13. [13]
    P. F. Moulton, An Investigation of the Co : MgF2 Laser System, IEEE J. Quant. Electr. QE-21, 1582–1588 (1985)Google Scholar
  14. [14]
    V. Evtuhov and A. E. Siegman, A Twisted-Mode Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity, Appl. Opt. 4, 142–143 (1965)CrossRefADSGoogle Scholar
  15. [15]
    J. Berger et al., 370 mW, 1. 06 μm, cw TEM00 Output from a Nd:YAG Laser Rod End-Pumped by a Monolithic Diode Array, Electr. Lett. 23, 669–670 (1987)Google Scholar
  16. [16]
    W. P. Risk, Modeling of Longitudinally Pumped Solid-State-Lasers Exhibiting Reabsorption Losses, J. Opt. Soc. Am. B 5, 1412–1423 (1988)Google Scholar
  17. [17]
    T. Y. Fan and R. L. Byer, Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser, IEEE J. Quant. Electr. QE-23, 605–612 (1987)Google Scholar
  18. [18]
    P. Lacovara et al., Room-Temperature Diode-Pumped Yb:YAG Laser, Opt. Lett. 16, 1089–1091 (1991)CrossRefADSGoogle Scholar
  19. [19]
    A. Yariv, Energy and Power Considerations in Injection and Optically Pumped Lasers, Proc. IEEE 51, 1723–1731 (1963)Google Scholar
  20. [20]
    C. L. Tang, H. Statz, and G. de Mars, Spectral Output and Spiking Behavior of Solid-State Lasers, J. Appl. Phys. 34, 2289–2295 (1963)CrossRefADSGoogle Scholar
  21. [21]
    T. J. Kane and R. L. Byer, Monolithic, Unidirectional Single-Mode Nd:YAG Ring Laser, Opt. Lett. 10, 65 (1985)CrossRefADSGoogle Scholar
  22. [22]
    A. E. Siegman, Lasers (University Science Books, Hill Valley, California, 1986), Chap. 12, Sect. 12.2Google Scholar
  23. [23]
    A. Yariv, Optical Electronics (Saunders College Publishing, Forth Worth, 1991), Sect. 10.7Google Scholar
  24. [24]
    A. L. Schawlow and C. H. Townes, Infrared and Optical Masers, Phys. Rev. 112, 1940–1949 (1958)CrossRefADSGoogle Scholar
  25. [25]
    C. H. Henry, Theory of Linewidth of Semiconductor Lasers, IEEE J. Quant. Electr. QE-18, 259 (1982)Google Scholar
  26. [26]
    T. Day, E. K. Gustafson, and R. L. Byer, Sub-Hertz Relative Frequency Stabilization of Two Diode Laser Pumped Nd:YAG Lasers Locked to a Fabry-Perot Interferometer, IEEE J. Quant. Electr. QE-28, 1106 (1992)Google Scholar
  27. [27]
    D. K. Owens and R. Weiss, Measurement of the Phase Fluctuation in a He-Ne Zeeman Laser, Rev. Sci. Instrum. 45, 1060 (1974)CrossRefADSGoogle Scholar
  28. [28]
    W. Demtröder, Laser Spectroscopy, Second Edition (Springer-Verlag, Berlin, 1996) Chap. 7Google Scholar
  29. [29]
    R. W. T. Drever, et al., Laser Phase and Frequency Stabilization using an Optical Resonator, Appl. Phys. B 31, 97–105 (1983)Google Scholar
  30. [30]
    N. Uekara and K. Ueda, 193-mHz Beat Linewidth of Frequency Stabilized Laser-Diode-Pumped Nd:YAG Ring Lasers, Opt. Lett. 18, 505 (1993)CrossRefADSGoogle Scholar
  31. [31]
    Introduction to Diode-Pumped Solid-State Lasers, LIGHTWAVE Electronics Corp. Techn. Information N. 1 (1993)Google Scholar
  32. [32]
    K. Otsuka, Winner-Takes-All and Antiphase States in Multimode Lasers, Phys. Rev. Lett. 67, 1090–1093 (1991)CrossRefADSGoogle Scholar
  33. [33]
    G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, (Van Nostrand Reinhold, New York, 1986), Fig. 6.11, by permission.Google Scholar
  34. [34]
    Reference (7) Sect. 7.1.1. and Fig. 7.5Google Scholar
  35. [35]
    Reference (22), Chapt. 17, Sects. 17.5 and 17.6Google Scholar
  36. [36]
    D. Golla et al., 62-W CW TEM00 Mode Nd:YAG Laser Side-Pumped by Fiber-Coupled Diode-Lasers, Opt. Lett. 21, 210–212 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Orazio Svelto
    • 1
  1. 1.Dipto. FisicaPolitecnico di MilanoMilanoItaly

Personalised recommendations