Advertisement

The Future of Photodynamic Therapy

  • Macrene Alexiades-Armenakas
Chapter

Abstract

The field of PDT is increasing its accuracy at targeting specific tissues, organisms, and other matter for ever-advancing applications in therapeutics. Of importance is the broadening of the classes of photosensitizers that are being developed for use in PDT, along with the development of novel wavelengths and light sources. Technologically advanced, microtargeted delivery systems are being developed that will enable photosensitizers to penetrate to desired targets with increasing specificity and efficiency. Finally, the applications of PDT to various clinical conditions are advancing, with the advent of its use for the treatment of acne, light hair removal, and infections.

Keywords

Methylene Blue Actinic Keratose Intense Pulse Light Liposomal Delivery PPIX Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alexiades-Armenakas MR. Laser-mediated photo­dynamic therapy. Clin Dermatol. 2006;24(1):16–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Marcus SL, McIntyre WR. Photodynamic therapy systems and applications. Expert Opin Emerg Drugs. 2002;7(2):318–31.CrossRefGoogle Scholar
  3. 3.
    Atkins PW. Molecules. 2nd ed. Cambridge: Cambridge University Press; 2003. p. 46–8, 143, 144–51, 168–9.Google Scholar
  4. 4.
    Bruice PY. Organic chemistry. 4th ed. Upper Saddle River: Prentice-Hall; 2004. p. 594–9.Google Scholar
  5. 5.
    Fox MA, Whitesell JK. Organic chemistry. 3rd ed. Sudbury: Jones and Bartlett Publishers; 2004. p. 64–74.Google Scholar
  6. 6.
    Buschmann C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res. 2007;92(2):261–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Nyman ES, Hynninen PH. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B. 2004;73(1-2):1–28.PubMedCrossRefGoogle Scholar
  8. 8.
    Krasnovsky Jr AA, Neverov KV, Egorov SYu, Roeder B, Levald T. Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J Photochem Photobiol B. 1990;5(2):245–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamamoto T, Iriuchishima T, Aizawa S, Okano T, Goto B, Nagai Y, et al. Bactericidal effect of photodynamic therapy using Na-pheophorbide a: evaluation of adequate light source. Photomed Laser Surg. 2009;27(6):849–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Radestock A, Elsner P, Gitter B, Hipler UC. Induction of apoptosis in HaCaT cells by photodynamic therapy with chlorin e6 or pheophorbide a. Skin Pharmacol Physiol. 2007;20(1):3–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature. 1985;318:162–3.CrossRefGoogle Scholar
  12. 12.
    Mitchel DR, Brown Jr RM, Spires TL, Romanovicz DK, Lagow RJ. The synthesis of megatubes: new dimensions in carbon. Materials. 2001;40(12):2751–5.Google Scholar
  13. 13.
    Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, et al. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radic Biol Med. 2007;43(5):711–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Tegos G, Demidova T, Arcila-Lopez D, Lee H, Wharton T, Gali H, et al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol. 2005;12(10):1127–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang L, Terakawa M, Zhiyentayev T, Huang YY, Sawayama Y, Jahnke A, et al. Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials. Nanomedicine. 2010;6:442–52.PubMedGoogle Scholar
  16. 16.
    Leznoff CC, Lever ABP, editors. The phthalocyanines, Vols. 1–4. New York: Wiley; 1986–1993.Google Scholar
  17. 17.
    McKeown NB. Phthalocyanine materials – synthesis, structure and function. Cambridge: Cambridge University Press; 1998.Google Scholar
  18. 18.
    Kadish K, Smith KM, Guilard R, editors. The porphyrin handbook, Vols. 15–20. New York: Academic Press; 2003.Google Scholar
  19. 19.
    Leznoff CC, Vigh S, Svirskaya PI, Greenberg S, Drew DM, Ben-Hur E, et al. Synthesis and photocytotoxicity of some new substituted phthalocyanines. Photochem Photobiol. 1989;49(3):279–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Guo H, Qian H, Idris NM, Zhang Y. Singlet-oxygen induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine. 2010;6:486–95.PubMedGoogle Scholar
  21. 21.
    Zhao B, Yin JJ, Bilski PJ, Chignell CF, Roberts JE, He YY. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol. 2009;241(2):163–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Taurand G. Phenothiazine and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley; 2005.Google Scholar
  23. 23.
    Salah M, Samy N, Fadel M. Methylene blue mediated photodynamic therapy for resistant plaque psoriasis. J Drugs Dermatol. 2009;8(1):42–9.PubMedGoogle Scholar
  24. 24.
    Menezes S, Capella MA, Caldas LR. Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol B. 1990;5(3–4):505–17.PubMedCrossRefGoogle Scholar
  25. 25.
    Sharma M, Bansal H, Gupta PK. Virulence of Pseudomonas aeruginosa cells surviving photodynamic treatment with toluidine blue. Curr Microbiol. 2005;50(5):277–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK. Speziale P toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob Agents Chemother. 2008;52(1):299–305.PubMedCrossRefGoogle Scholar
  27. 27.
    Lin J, Bi LJ, Zhang ZG, Fu YM, Dong TT. Toluidine blue-mediated photodynamic therapy of oral wound infections in rats. Lasers Med Sci. 2010;25:233–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Seddon JM, Templer RH. Polymorphism of lipid-water systems. In: Lipowsky R, Sackmann E, editors. Handbook of biological physics, vol.1. Elsevier: Amsterdam; 1995.Google Scholar
  29. 29.
    Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS. Delivery of the photosensitizer Pc 4 in PEG-PCL micelles for in vitro PDT studies. J Pharm Sci. 2010;99:2386–98.PubMedGoogle Scholar
  30. 30.
    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55.Google Scholar
  31. 31.
    Oku N, Ishii T. Antiangiogenic photodynamic therapy with targeted liposomes. Methods Enzymol. 2009;465:313–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Fadel M, Salah M, Samy N, Mona S. Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris. J Drugs Dermatol. 2009;8(11):983–90.PubMedGoogle Scholar
  33. 33.
    de Leeuw J, van der Beek N, Bjerring P, Martino Neumann HA. Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid 0.5% liposomal spray and intense pulsed light in combination with topical keratolytic agents. J Eur Acad Dermatol Venereol. 2010;24:460–9.PubMedCrossRefGoogle Scholar
  34. 34.
    van Hell AJ, Costa CI, Flesch FM, Sutter M, Jiskoot W, Crommelin DJ, et al. Self-assembly of recombinant amphiphilic oligopeptides into vesicles. Biomacromolecules. 2007;8(9):2753–61.PubMedCrossRefGoogle Scholar
  35. 35.
    van Hell AJ, Fretz MM, Crommelin DJ, Hennink WE, Mastrobattista E. Peptide nanocarriers for intracellular delivery of photosensitizers. J Control Release. 2010;141:347–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a “Trojan horse”. Photochem Photobiol Sci. 2006;5(8):727–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Alexiades-Armenakas MR. Aminolevulinic acid photodynamic therapy for actinic keratoses/actinic cheilitis/acne: vascular lasers. Dermatol Clin. 2007;25:25–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Karrer S, Bäumler W, Abels C, Hohenleutner U, Landthaler M, Szeimies RM. Long-pulse dye laser for photodynamic therapy: investigations in vitro and in vivo. Lasers Surg Med. 1999;25(1):51–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Alexiades-Armenakas MR, Geronemus RG. Laser-mediated photodynamic therapy of actinic keratoses. Arch Dermatol. 2003;139(10):1313–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Alexiades-Armenakas M. Long-pulsed dye laser-mediated photodynamic therapy combined with topical therapy for mild to severe comedonal, inflammatory, or cystic acne. J Drugs Dermatol. 2006;5(1):45–55.PubMedGoogle Scholar
  41. 41.
    Alexiades-Armenakas MR, Geronemus RG. Laser-mediated photodynamic therapy of actinic cheilitis. J Drugs Dermatol. 2004;3(5):548–51.PubMedGoogle Scholar
  42. 42.
    Alexiades-Armenakas M. Laser-mediated photodynamic therapy of lichen sclerosus. J Drugs Dermatol. 2004;3(6 Suppl):S25–7.PubMedGoogle Scholar
  43. 43.
    Dover JS, Bhatia AC, Stewart B, Arndt KA. Topical 5-aminolevulinic acid combined with intense pulsed light in the treatment of photoaging. Arch Dermatol. 2005;141(10):1247–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Oh SH, Ryu DJ, Han EC, Lee KH, Lee JH. A comparative study of topical 5-aminolevulinic acid incubation times in photodynamic therapy with intense pulsed light for the treatment of inflammatory acne. Dermatol Surg. 2009;35(12):1918–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Attili SK, Lesar A, McNeill A, Camacho-Lopez M, Moseley H, Ibbotson S, et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br J Dermatol. 2009;161(1):170–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Babilas P, Travnik R, Werner A, Landthaler M, Szeimies RM. Split-face-study using two different light sources for topical PDT of actinic keratoses: non-inferiority of the LED system. J Dtsch Dermatol Ges. 2008;6(1):25–32.PubMedGoogle Scholar
  47. 47.
    Koek MB, Buskens E, van Weelden H, Steegmans PH, Bruijnzeel-Koomen CA, Sigurdsson V. Home versus outpatient ultraviolet B phototherapy for mild to severe psoriasis: pragmatic multicentre randomised controlled non-inferiority trial (PLUTO study). BMJ. 2009;338:b1542.PubMedCrossRefGoogle Scholar
  48. 48.
    Lowe NJ. Home ultraviolet phototherapy. Semin Dermatol. 1992;11(4):284–6.PubMedGoogle Scholar
  49. 49.
    Sadick N. A study to determine the effect of combination blue (415 nm) and near-infrared (830 nm) light-emitting diode (LED) therapy for moderate acne vulgaris. J Cosmet Laser Ther. 2009;11(2):125–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Wiegell SR, Haedersdal M, Eriksen P, Wulf HC. Photodynamic therapy of actinic keratoses with 8% and 16% methyl aminolaevulinate and home-based daylight exposure: a double-blinded randomized clinical trial. Br J Dermatol. 2009;160(6):1308–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Riddle CC, Terrell SN, Menser MB, Aires DJ, Schweiger ES. A review of photodynamic therapy (PDT) for the treatment of acne vulgaris. J Drugs Dermatol. 2009;8(11):1010–9.PubMedGoogle Scholar
  52. 52.
    Alexiades-Armenakas M. Photodynamic therapy for acne, rejuvenation, and hair removal. In: Ahluwalia GS, editor. Cosmetic applications of laser and light-based systems. Norwich: William Andrew Inc; 2009. p. 399–414.CrossRefGoogle Scholar
  53. 53.
    Divaris DX, Kennedy JC, Pottier RH. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol. 1990;136(4):891–7.PubMedGoogle Scholar
  54. 54.
    Van der Veen N, de Bruijn HS, Berg RJ, Star WM. Kinetics and localization of PpIX fluorescence after topical and systemic ALA application observed in skin and skin tumours of UVB-treated mice. Br J Cancer. 1996;73(7):925–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Han I, Jun MS, Kim SK, Kim M, Kim JC. Expression pattern and intensity of protoporphyrin IX induced by liposomal 5-aminolevulinic acid in rat pilosebaceous unit throughout hair cycle. Arch Dermatol Res. 2005;297(5):210–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Bissonnette R, Shapiro J, Zeng H, McLean DI, Lui H. Topical photodynamic therapy with 5-aminolevulinic acid does not induce hair regrowth in patients with extensive alopecia areata. Br J Dermatol. 2000;143(5):1032–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Demidova TN, Hamblin MR. Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol. 2004;17(3):245–54.PubMedGoogle Scholar
  58. 58.
    Maisch T. Phototoxicity of a novel porphyrin photosensitizer against MRSA in an ex-vivo porcine skin model. In: Presented at the sixth annual euro-PDT meeting. Berne, Switzerland, March 31–April 1, 2006.Google Scholar
  59. 59.
    Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci. 2005;4(7):503–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Bisland SK, Chien C, Wilson BC, et al. Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis. Photochem Photobiol Sci. 2006;5(1):31–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Wong TW, Wang YY, Sheu HM, et al. Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob Agents Chemother. 2005;49(3):895–902.PubMedCrossRefGoogle Scholar
  62. 62.
    Millson CE, Wilson M, MacRobert AJ, et al. Exvivo treatment of gastric Helicobacter infection by photodynamic therapy. J Photochem Photobiol. 1996;32(1–2):59–65.Google Scholar
  63. 63.
    Darras-Vercambre S, Carpentier O, Vincent P, Bonnevalle A, Thomas P. Photodynamic action of red light for treatment of erythrasma: preliminary results. Photodermatol Photoimmunol Photomed. 2006;22(3):153–6.PubMedCrossRefGoogle Scholar
  64. 64.
    O’Riordan K, Sharlin DS, Gross J, Chang S, Errabelli D, Akilov OE, et al. Photoinactivation of Mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob Agents Chemother. 2006;50(5):1828–34.PubMedCrossRefGoogle Scholar
  65. 65.
    O’Riordan K, Akilov OE, Chang SK, Foley JW, Hasan T. Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection. Photochem Photobiol Sci. 2007;6(10):1117–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG. Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother. 2005;49(10):4288–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:155–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Kamp H, Tietz HJ, Lutz M, Piazena H, Sowyrda P, Lademann J, et al. Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses. 2005;48:101–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Kamp H, Tietz HJ, Lutz M, et al. Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses. 2005;48(2):101–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Watanabe D, Kawamura C, Masuda Y, Akita Y, Tamada Y, Matsumoto Y. Successful treatment of toenail onychomycosis with photodynamic therapy. Arch Dermatol. 2008;144(1):19–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Piraccini BM, Rech G, Tosti A. Photodynamic therapy of onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol. 2008;59:S75–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Donnelly RF, McCarron PA, Tunney MM. Antifungal photodynamic therapy. Microbiol Res. 2008;163(1):1–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of DermatologyYale University School of MedicineNew YorkUSA
  2. 2.Dermatology and Laser Surgery CenterNew YorkUSA

Personalised recommendations