Nonlinear Mechanics of Three-Dimensional Solids

  • Walter Lacarbonara
Chapter

Abstract

This chapter presents the theory of nonlinear three-dimensional solids with regard to the geometry of deformation, stress, interactions with the environment, and constitutive equations. A unique feature of this presentation is that a few key concepts such as the stretch vector or the surface stretch vector are introduced in an original fashion that paves the way for reduced structural theories of special slender (beam-like) or thin (plate-like) bodies. The presented nonlinear three-dimensional theory constitutes the theoretical framework from which reduced or constrained theories of slender or thin bodies can be deduced or within which they can be fully justified. A few examples are presented to show the richness of the implications stemming from three-dimensional theory.

Keywords

Deformation gradient Stretch vector Surface stretch vector Cauchy–Green strain tensor Green–Lagrange strain tensor Infinitesimal strain tensor Euler–Almansi strain tensor Stretching tensor Spin tensor Cauchy polar decomposition Cauchy stress Piola–Kirchhoff stress tensor Nominal stress Equations of motion Constitutive equations Principle of Objectivity Nonlinearly elastic materials Thermodynamic restrictions Clausius–Duhem inequality Principle of Virtual Work Principle of Virtual Power Weak form 

References

  1. 1.
    Abdel-Ghaffar AM (1980) Vertical vibration analysis of suspension bridges. ASCE J Struct Div106:2053–2075Google Scholar
  2. 2.
    Abdel-Ghaffar AM (1982) Suspension bridge vibration: continuum formulation. J Eng Mech-ASCE108:1215–1232Google Scholar
  3. 3.
    Abdel-Ghaffar AM, Rubin LI (1983) Nonlinear free vibrations of suspension bridges: theory. J Eng Mech-ASCE109:313–345Google Scholar
  4. 4.
    Abdel-Ghaffar AM, Khalifa MA (1991) Importance of cable vibrations in dynamics of cable-stayed bridges. J Eng Mech-ASCE117:2571–2589Google Scholar
  5. 5.
    Addessi D, Lacarbonara W, Paolone A (2005) On the linear normal modes of planar prestressed elastica arches. J Sound Vib 284:1075–1097Google Scholar
  6. 6.
    Addessi D, Lacarbonara W, Paolone A (2005) Free in-plane vibrations of highly pre-stressed curved beams. Acta Mech 180:133–156Google Scholar
  7. 7.
    Addessi D, Lacarbonara W, Paolone A (2005) Linear vibrations of planar pre-stressed arches undergoing static bifurcations. In: Proceedings of the EURODYN 2005, Paris, Sept 4–7, 2005Google Scholar
  8. 8.
    Agar TJA (1989) The analysis of aerodynamic flutter of suspension bridges. Comput Struct30:593–600Google Scholar
  9. 9.
    Agar TJA (1989) Aerodynamic flutter analysis of suspension bridges by a modal technique. Eng Struct 11:75–82Google Scholar
  10. 10.
    Akhtar I, Marzouk OA, Nayfeh AH (2009) A van der Pol-Duffing oscillator model of hydrodynamic forces on canonical structures. J Comput Nonlin Dyn 4:041006-1-9Google Scholar
  11. 11.
    Akhtar I, Nayfeh AH, Ribbens CJ (2009) On the stability and extension of reduced-order Galerkin models in incompressible flows: a numerical study of vortex shedding. Theor Comp Fluid Dyn23:213–237Google Scholar
  12. 12.
    Allan W (1874) Theory of arches. D. Van Nostrand, New YorkGoogle Scholar
  13. 13.
    Allgower EL, Georg K (1990) Numerical continuation methods: an introduction. Springer, BerlinGoogle Scholar
  14. 14.
    Allgower EL, Georg K (1997) Numerical path following. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol 5. North-Holland, Delft, NL, pp 3–207Google Scholar
  15. 15.
    Ames WF (1002) Numerical methods for partial differential equations, 3rd edn. Academic, New YorkGoogle Scholar
  16. 16.
    Anderson TJ, Nayfeh AH, Balachandran B (1996) Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J Vib Acoust118:21–27Google Scholar
  17. 17.
    Andrade LG, Awruch AM, Morsch IB (2007) Geometrically nonlinear analysis of laminate composite plates and shells using the eight-node hexahedral element with one-point integration. Compos Struct 79(4):571–580Google Scholar
  18. 18.
    Anselone PM, Moore RH (1966) An extension of the Newton Kantorovic method for solving nonlinear equations with an application to elasticity. J Math Anal Appl13:475–501Google Scholar
  19. 19.
    Antman SS, Warner WH (1967) Dynamical theory of hyperelastic rods. Arch Rat Mech Anal23:135–162MathSciNetGoogle Scholar
  20. 20.
    Antman SS (1972) The theory of rods. In: Flügge S, Truesdell C (ed) Handbuch der Physik Via/2, pp 641–703Google Scholar
  21. 21.
    Antman SS (1990) Global properties of buckled states of plates that can suffer thickness changes. Arch Ration Mech Anal110:103–117MathSciNetGoogle Scholar
  22. 22.
    Antman SS (1998) The simple pendulum is not so simple. SIAM Rev40:927–930MathSciNetGoogle Scholar
  23. 23.
    Antman SS (2005) Problems of nonlinear elasticity. Springer, New YorkGoogle Scholar
  24. 24.
    Antman SS, Lacarbonara W (2009) Forced radial motions of nonlinearly viscoelastic shells. J Elast 96:155–190MathSciNetGoogle Scholar
  25. 25.
    Arbabei F, Li F (1991) Buckling of variable cross-section columns. Integral–equation approach. J Struct Engng117:2426–2441Google Scholar
  26. 26.
    Arena A (2008) Modellazione non lineare ed analisi della risposta dinamica di ponti sospesi. MS Thesis (in Italian). Sapienza University of RomeGoogle Scholar
  27. 27.
    Arena A, Formica G, Lacarbonara W, Dankowicz H (2011) Nonlinear finite element-based path following of periodic solutions. Paper no. DETC2011-48681, 2011 ASME IDETC, Washington DC USA, August 28–31, 2011Google Scholar
  28. 28.
    Arvin H (2012) Nonlinear modal analysis of a rotating composite Timoshenko beam with internal resonance. PhD Dissertation, Amirkabir University (Iran) and Sapienza University of Rome (Italy)Google Scholar
  29. 29.
    Arena A, Lacarbonara W, Marzocca P (2011) Nonlinear aeroelastic formulation for flexible high-aspect ratio wings via geometrically exact approach. Paper No. AIAA-11-937605, 52nd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conference, Denver, CO, April 4–7, 2011Google Scholar
  30. 30.
    Arena A, Lacarbonara W, Marzocca P (2011) Nonlinear dynamic stall flutter for flexible high-aspect ratio wings. ENOC 2011 7th European Nonlinear Dynamics Conference, Rome, July 24–29, 2011Google Scholar
  31. 31.
    Arena A, Lacarbonara W, Marzocca P (2012) Nonlinear post-flutter analysis for flexible high-aspect-ratio wings. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, USA, April 23–27Google Scholar
  32. 32.
    Arena A, Lacarbonara W (2012) Nonlinear parametric modeling of suspension bridges under aeroelastic forces. Nonlinear Dynam, DOI: 10.1007/s11071-012-0636-3Google Scholar
  33. 33.
    Arena A, Lacarbonara W, Marzocca P (2012) Unsteady aerodynamic modeling and flutter analysis of long-span suspension bridges. Paper No. DETC2012/CIE-70289, ASME IDETC/CIE 2012, August 12–15, 2012, Chicago, ILGoogle Scholar
  34. 34.
    Argyris J (1982) An excursion into large rotations. Comput Meth Appl Mech Eng 32:85–155MathSciNetGoogle Scholar
  35. 35.
    Asplund SO (1943) On the deflection theory of suspension bridges. Alqvist & Wiksells boktryckeri. Uppsala, StockholmGoogle Scholar
  36. 36.
    Atluri S (1973) Nonlinear vibrations of a hinged beam including nonlinear inertia effects. J Appl Mech 40:121–126Google Scholar
  37. 37.
    Augusti G, Spinelli P, Borri C, Bartoli G, Giachi M, Giordano S (1995) The CRIACIV Atmospheric Boundary Layer Wind Tunnel. In: Wind engineering: retrospect and prospect, IAWE, International Association for Wind Engineering, vol. 5, Wiley Eastern Limited, New DelhiGoogle Scholar
  38. 38.
    Auricchio F, Taylor RL (1997) Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput Method Appl M 143:175–194Google Scholar
  39. 39.
    Auricchio F, Taylor RL, Lubliner J (1997) Shape-memory alloys: macro-modelling and numerical simulations of the superelastic behavior. Comput Method Appl M 146:281–312Google Scholar
  40. 40.
    Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: solution algorithm and boundary value problems. Int J Numer Methods Eng 61:807–836Google Scholar
  41. 41.
    Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: thermomechanical coupling and hybrid composite applications. Int J Numer Methods Eng 61:716–737Google Scholar
  42. 42.
    Avramov KV, Pierre C, Shyriaieva NV (2008) Nonlinear equations of flexural-flexural-torsional oscillations of rotating beams with arbitrary cross-section. Int Appl Mech44: 582–589MathSciNetGoogle Scholar
  43. 43.
    Ball JM (1978) Finite-time blow-up in nonlinear problems. Nonlinear Evolution Equations. Academic, New York, pp 189–205Google Scholar
  44. 44.
    Balachandran B, Preidikman S (2004) Oscillations of piezoelectric micro-scale resonators. In: Topping BHV, Mota Soares CA (eds) Computational structures technology, progress in computational structures technology, pp 327–352Google Scholar
  45. 45.
    Ban RE, Chan TF (1986) PLTMGC: A multi-grid continuation program for parameterized nonlinear elliptic systems. SIAM J Sci Stat Comput7:540–559Google Scholar
  46. 46.
    Bank RE (1998) PLTMG: A software package for solving elliptic partial differential equations, Users’ Guide 8.0. Software, Environments and Tools 5. J Soc Ind Appl MathGoogle Scholar
  47. 47.
    Bardin BS, Markeyev AP (1995) The stability of the equilibrium of a pendulum for vertical oscillations of the point of suspension. J Appl Math Mech59:879–886MathSciNetGoogle Scholar
  48. 48.
    Bartoli G, Righi M (2006) Flutter mechanism for rectangular prisms in smooth and turbulent flow. J Wind Eng Ind Aerodyn 94:275–291Google Scholar
  49. 49.
    Başar Y, Krätzig WB (1985) Mechanik der Flächentragwerke. Friedrich Vieweg & Sohn, Braunschweig/WiesbadenGoogle Scholar
  50. 50.
    Başar Y (1987) A consistent theory of geometrically non-linear shells with an independent rotation vector. Int J Solids Struct 23:1401–1415Google Scholar
  51. 51.
    Başar Y (1993) Finite-rotation theories for arbitrary composite laminates. Acta Mech98:159–176MathSciNetGoogle Scholar
  52. 52.
    Başar Y, Montag U, Ding Y (1993) On a isoparametric finite-element for composite laminates with finite rotation. Comput Mech12:329–348Google Scholar
  53. 53.
    Başar Y, Ding Y, Schultz R (1993) Refined shear-deformation models for composite laminates with finite rotations. Int J Solids Struct 30:2611–2638Google Scholar
  54. 54.
    Başar Y, Itskov M, Eckstein A (2000) Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements. Comput Method Appl Mech Engrg185:367–397Google Scholar
  55. 55.
    Batra RC (2006) Elements of continuum mechanics. AIAA Educational SeriesGoogle Scholar
  56. 56.
    Batra RC (2007) Higher-order shear and normal deformable theory for functionally graded incompressible linear elastic plates. Thin-Walled Struct45:974–982Google Scholar
  57. 57.
    Batra RC, Porfiri M, Spinello D (2006) Electromechanical model of electrically actuated narrow microbeams. J Microelectromech S15:1175–1189Google Scholar
  58. 58.
    Batra RC, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309:600–612Google Scholar
  59. 59.
    Bazant Z, Cedolin L (1991) Stability of structures. Oxford University Press, New YorkGoogle Scholar
  60. 60.
    Behal A, Marzocca P, Rao VM, Gnann A (2006) Nonlinear adaptive control of an aeroelastic two-dimensional lifting surface. J Guid Contr Dynam29:382–390Google Scholar
  61. 61.
    Beletsky VV, Levin EM (1993) Dynamics of space tether systems. Advances in the astronautical sciences, vol 83. American Astronautical Society, San DiegoGoogle Scholar
  62. 62.
    Belyayev NM (1924) Stability of prismatic rods subject to variable longitudinal forces (in Russian), in Engineering construction and structural mechanics, LeningradGoogle Scholar
  63. 63.
    Benedetti D, Brebbia C, Cedolin, L (1972) Geometrical nonlinear analysis of structures by finite elements. Meccanica7:1–10Google Scholar
  64. 64.
    Bernardini D, Pence TJ (2002) Shape-memory materials, modeling. In: Schwartz M (ed) The encyclopedia of smart materials, vol 2. Wiley, New York, pp 964–980Google Scholar
  65. 65.
    Bernardini D, Pence TJ (2009) Mathematical models for shape memory materials. In: Schwartz M (ed) Smart materials. CRC Press, Boca Raton, pp 20.17–20.28Google Scholar
  66. 66.
    Beran PS, Strganac, TW, Kim K, Nichkawde C (2004) Studies of store-induced Limit-Cycle Oscillations using a model with full system nonlinearities. Nonlinear Dynam 37:323–339Google Scholar
  67. 67.
    Biezeno CB, Koch, J (1923) Over een nieuwe methode ter berekening van vlokke platen met toepassing op enkele voor de techniek belangrijke belastingsgevallen. Ing Grav38:25–36Google Scholar
  68. 68.
    Bigoni D (2012) Nonlinear solid mechanics. Bifurcation theory and material instability. Cambridge University Press, Cambridge.Google Scholar
  69. 69.
    Bleich F, McCullough CB, Rosecrans R, Vincent GS (1950) The mathematical theory of vibration in suspension bridges: A Contribution to the work of the Advisoy Board on the Investigation of Suspension Bridges. Department of Commerce, Bureau of Public Roads, USGPO, Washington, DCGoogle Scholar
  70. 70.
    Blekhman II (2000) Vibrational mechanics. Nonlinear dynamic effects, general approach, applications. World Scientific, SingaporeGoogle Scholar
  71. 71.
    Blevins RD (1977) Flow-induced vibration. Van Nostrand Reinhold, New YorkGoogle Scholar
  72. 72.
    Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New YorkGoogle Scholar
  73. 73.
    Bolotin VV (1964) The dynamic stability of elastic systems. Holden-Day, San FranciscoGoogle Scholar
  74. 74.
    Boonyapinyo V, Lauhatanon Y, Lukkunaprasit P (2006) Nonlinear aerostatic stability analysis of suspension bridges. Eng Struct28:793–803Google Scholar
  75. 75.
    Borri M, Mantegazza P (1985) Some contributions on structural and dynamic modeling of helicopter rotor blades. L’Aerotecnica Missili e Spazio64(9):143–154Google Scholar
  76. 76.
    Bouc R (1967) Forced vibrations of mechanical systems with hysteresis. In: Preceedings of the 4th International Conference on Nonlinear Oscillations, Prague, CzechoslovakiaGoogle Scholar
  77. 77.
    Bouc R (1971) Modele mathematique dhysteresis. Acustica24:16–25Google Scholar
  78. 78.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, BerlinGoogle Scholar
  79. 79.
    Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer, New YorkGoogle Scholar
  80. 80.
    Brownjohn JMW (1994) Observations on non-linear dynamic characteristics of suspension bridges. Earthquake Eng Struc23:1351–1367Google Scholar
  81. 81.
    Brownjohn JMW, Dumanoglu AA, Taylor CA (1994) Vibration characteristics of a suspension footbridge. Eng Struct 16:395–406Google Scholar
  82. 82.
    Brownjohn JMW (1996) Vibration characteristics of a suspension footbridge. J Sound Vib 202:29–46Google Scholar
  83. 83.
    Buechner HF, Johnson MW, Moore RH (1965) The calculation of equilibrium states of elastic bodies by Newton’s method. Proceedings of the 9th Mid Western Mech Conf, MadisonGoogle Scholar
  84. 84.
    Burgess JJ, Triantafyllou MS (1988) The elastic frequencies of cables. J Sound Vib 120: 153–165Google Scholar
  85. 85.
    Burgess JJ (1993) Bending stiffness in a simulation of undersea cable deployment. Int J Offshore Polar Eng 3:197–204Google Scholar
  86. 86.
    Caflisch R, Maddocks JH (1984) Nonlinear dynamical theory of the elastica. Proc R Soc Edin99A:1–23MathSciNetGoogle Scholar
  87. 87.
    Capecchi D, Vestroni F (1985) Steady-state dynamic analysis of hysteretic systems. J Eng Mech-ASCE 111:1515–1531Google Scholar
  88. 88.
    Capecchi D, Vestroni F (1990) Periodic response of a class of hysteretic oscillators. Int J Non Linear Mech 25:309–317Google Scholar
  89. 89.
    Carpineto N, Vestroni F, Lacarbonara W (2011) Vibration mitigation by means of hysteretic tuned mass dampers. In: Proceedings of EURODYN 2011, Leuven, July 4–5, 2011Google Scholar
  90. 90.
    Carpineto N (2011) Hysteretic tuned mass dampers for structural vibration mitigation. PhD Dissertation, Sapienza University of RomeGoogle Scholar
  91. 91.
    Carrera E (1999) Transverse normal stress effects in multilayered plates. J Appl Mech 66: 1004–1012Google Scholar
  92. 92.
    Carrera E, Parisch H (1997) An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells. Compos Struct40(1):11–24Google Scholar
  93. 93.
    Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Method E 9:87–140MathSciNetGoogle Scholar
  94. 94.
    Carrera E, Ciuffreda A (2005) A unified formulation to assess theories of multi-layered plates for various bending problems. Compos Struct 69:271–93Google Scholar
  95. 95.
    Cartmell M (1990) Introduction to linear, parametric and nonlinear vibrations. Chapman and Hall, LondonGoogle Scholar
  96. 96.
    Casciaro R (2005) Computational asymptotic post–buckling analysis of slender elastic structures, CISM Courses and Lectures NO. 470. Springer, New YorkGoogle Scholar
  97. 97.
    Castro FM (1991) Mechanical switches snap back. Mach Des 63:56–61Google Scholar
  98. 98.
    Caughey TK (1960) Sinusoidal excitation of a system with bilinear hysteresis. J Appl Mech 643:640–643MathSciNetGoogle Scholar
  99. 99.
    Cesari L (1971) Asymptotic behavior and stability problems in ordinary differential equations. Springer, BerlinGoogle Scholar
  100. 100.
    Cevik M, Pakdemirli M (2005) Non-linear vibrations of suspension bridges with external excitation. Int J Non Linear Mech40:901–923Google Scholar
  101. 101.
    Chan TF, Keller HB (1982) Arc-length continuation and multi-grid techniques for nonlinear eigenvalue problems. SIAM J Sci Statist Comput3:173–194MathSciNetGoogle Scholar
  102. 102.
    Chang WK, Pilipchuk V, Ibrahim RA (1997) Fluid flow-induced nonlinear vibration of suspended cables. Nonlinear Dynam 14:377–406MathSciNetGoogle Scholar
  103. 103.
    Chelomeĭ V N (1939) The dynamic stability of elements of aircraft structures. Aeroflot, MoscowGoogle Scholar
  104. 104.
    Chen X, Matsumoto M, Kareem A (2000) Time domain flutter and buffeting response analysis of bridges. J Eng Mech-ASCE 126:7–16Google Scholar
  105. 105.
    Chen X, Kareem A (2000) Advances in modeling of aerodynamic forces on bridge decks. J Eng Mech 128:1193–1205Google Scholar
  106. 106.
    Cheng J, Jiang J-J, Xiao R-C, Xiang H-F (2003) Series method for analyzing 3D nonlinear torsional divergence of suspension bridges. Comput Struct 81:299–308Google Scholar
  107. 107.
    Cheng J, Jiang J-J, Xiao R-C (2003) Aerostatic stability analysis of suspension bridges under parametric uncertainty. Eng Struct 25:1675–1684Google Scholar
  108. 108.
    Cheng SH, Lau DT, Cheung MS (2003) Comparison of numerical techniques for 3D flutter analysis of cable-stayed bridges. Comput Struct 81:2811–2822Google Scholar
  109. 109.
    Chetayev NG (1961) The stability of motion. Pergamon Press, New YorkGoogle Scholar
  110. 110.
    Cheung YK (1968) The finite strip method in the analysis of elastic plates with two opposite simply supported ends. Proc Instn Civ Engrg Lond 40:1–7Google Scholar
  111. 111.
    Cho KN, Bert CW, Striz AG (1991) Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory. J Sound Vib 145(3):429–442Google Scholar
  112. 112.
    Cho MH, Parmerter RR (1993) Efficient higher-order composite plate-theory for general lamination configurations. AIAA J 31(7):1299–1306Google Scholar
  113. 113.
    Ciarlet PG, Destuynder PA (1979) Justification of a nonlinear model in plate theory. Comp Method Appl Mech Engrg17/18:227–258Google Scholar
  114. 114.
    Ciarlet PG (2002) The finite element method for elliptic problems. Society for Industrial and Applied Mathematics, Philadelphia, PAGoogle Scholar
  115. 115.
    Clark R, Cox D, Curtiss HCJ, Edwards JW, Hall KC, Peters DA, Scanlan RH, Simiu E, Sisto F, Strganac Th W (2004) A modern course in Aeroelasticity. Series: Solid mechanics and its applications 116, 4th edn. Kluwer Academic, New YorkGoogle Scholar
  116. 116.
    Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw-Hill Book, New YorkGoogle Scholar
  117. 117.
    COMSOL Multiphysics (2008) COMSOL Multiphysics/User’s Guide Version 3.5. COMSOL AB, Stokholm, SwedenGoogle Scholar
  118. 118.
    Connor J, Morin R (1970) Perturbation techniques in the analysis of geometrically nonlinear shells. In: Proc Symp Int Union of Theoretical and Applied Mechanics, Liege, vol 61, 683–705Google Scholar
  119. 119.
    Cosmo ML, Lorenzini EC (1997) Tethers in space handbook, 3rd edn. Smithsonian Astrophisical observatory. NASA Marshall Space Flight Center, Huntsville, AlabamaGoogle Scholar
  120. 120.
    Costello GA (1997) Theory of wire rope. Springer, New YorkGoogle Scholar
  121. 121.
    Cosserat EF (1909) Theorie de corps deformables. Hermann, ParisGoogle Scholar
  122. 122.
    Crandall SH (1956) Engineering analysis. McGraw-Hill, New YorkGoogle Scholar
  123. 123.
    Crespo da Silva MRM, Hodges DH (1986) Nonlinear flexure and torsion of rotating beams with application to helicopter rotor blades-I. Formulation. Vertica10:151–169Google Scholar
  124. 124.
    Crespo da Silva MRM, Glynn CVC (1978) Nonlinear flexural-flexural-torsional dynamics of inextensional beams I. Equations of motion. J Struct Mech 6:437–448Google Scholar
  125. 125.
    Crespo da Silva MRM (1988) Nonlinear flexural-flexural-torsional-extensional dynamics of beams-II. Response analysis. Int J Solids Struct 24:1235–1242Google Scholar
  126. 126.
    Crisfield MA (1991) Non-Linear Finite Element Analysis of Solids and Structures, vol 1. Wiley, New YorkGoogle Scholar
  127. 127.
    Crisfield MA (1997) Non-linear finite element analysis of solids and structures, vol. 2. Wiley, New YorkGoogle Scholar
  128. 128.
    Dankowicz H, Schilder F (2011) An extended continuation problem for bifurcation analysis in the presence of constraints. J Comput Nonlinear Dyn6:031003Google Scholar
  129. 129.
    Davenport AG (1966) The action of wind on suspension bridges. In: Int Symp on Suspension Bridges, Lisbon, 79–100Google Scholar
  130. 130.
    Demasi L (2009) 6 Mixed plate theories based on the Generalized Unified Formulation. Part I: Governing equations. Compos Struct 87:1–11. Part V: Results. Compos Struct 88:1–16Google Scholar
  131. 131.
    De Miranda M (1998) Storebaelt East Bridge - Aspetti del montaggio e della realizzazione (in Italian). Costruzioni Metalliche6Google Scholar
  132. 132.
    Den Hartog JP (1934) Mechanical vibrations. McGraw-Hill, New YorkGoogle Scholar
  133. 133.
    Depuis GA, Pfaffinger DD, Marcal PV (1970) Effective use of the incremental stiffness matrices in nonlinear geometric analysis. In: Proc Symp Int Union of Theoretical and Applied Mechanics, Liège, vol 61, 707–725Google Scholar
  134. 134.
    Diana, G, Bruni S, Collina A, Zasso A (1998) Aerodynamic challenges in super long span bridge design. In: Larsen A, Esdahl E (eds) Proceedings of the International Symposium on Advances in Bridge Aerodynamics, 10–13 May, Copenhagen. Balkema, RotterdamGoogle Scholar
  135. 135.
    Ding Q, Chen A, Xiang H (2002) Coupled flutter analysis of long-span bridges by multimode and full-order approaches. J Wind Eng Ind Aerodyn 90:1981–1993Google Scholar
  136. 136.
    Dinnik AN (1929) Design of columns of varying cross section. Trans ASME51:105–114Google Scholar
  137. 137.
    Dinnik AN (1932) Design of columns of varying cross section. Trans ASME54:165–171Google Scholar
  138. 138.
    Di Egidio A, Luongo A, Paolone A (2007) Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. Int J Non Linear Mech 42:88–98Google Scholar
  139. 139.
    Di Sciuva M, Icardi U (1995) Analysis of thick multilayered anisotropic plates by a higher-order plate element. AIAA J33(12):2435–2437Google Scholar
  140. 140.
    Doedel EJ, Paffenroth RC, Champneys AR, Fairgrieve TF, Kuznetsov, Yu A, Sandstede B, Wang X (2001) AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with HomCont), Technical Report, CaltechGoogle Scholar
  141. 141.
    Drozdov AD (1996) Finite elasticity and viscoelasticity. World Scientific, SingaporeGoogle Scholar
  142. 142.
    Ecker H, Dohnal F, Springer H (2005) Enhanced damping of a beam structure by parametric excitation. In: Proceedings of European Nonlinear Oscillations Conf. (ENOC-2005) Eindhoven, NLGoogle Scholar
  143. 143.
    El-Bassiouny AF (2007) Parametric excitation of internally resonant double pendulum. Phys Scripta76:173–186Google Scholar
  144. 144.
    Einaudi R (1936) Sulle configurazioni di equilibrio instabile di una piastra sollecitata da sforzi tangenziali pulsanti. Atti Accad Gioenia Catania 1 (serie 6), mem. XX:1–20Google Scholar
  145. 145.
    Eisley JG (1964) Nonlinear vibration of beams and rectangular plates. Z Angew Math Mech15:167–175MathSciNetGoogle Scholar
  146. 146.
    Elishakoff I (2000) Both static deflection and vibration mode of uniform beam can serve as a buckling mode of a non-uniform column. J Sound Vib 232:477–489MathSciNetGoogle Scholar
  147. 147.
    Elishakoff I (2005) Eigenvalues of inhomogeneous structures. CRC Press, Boca RatonGoogle Scholar
  148. 148.
    Engesser F (1909) Ueber die Knickfestigkeit von Staeben veraenderlichen Traegheitsmomentes (in German). Zeitschrift der Oesterreichischer Ingenieur und Architekten Verein 34:506–508Google Scholar
  149. 149.
    Eringen AC (1976) Nonlocal field theories. In: Eringen AC (ed) Continuum physics, vol 4. Academic, New YorkGoogle Scholar
  150. 150.
    Euler L (1759) Sur la force des colonnes (in French). Memoires de L’Academie des Sciences et Belles-Lettres 13:252–282Google Scholar
  151. 151.
    Evensen JA, Evan-Iwanowski RM (1996) Effects of longitudinal inertia upon the parametric response of elastic columns. J Appl Mech33:141–148Google Scholar
  152. 152.
    Faedo S (1949) Un nuovo metodo per l’analisi esistenziale e quantitativa dei problemi di propagazione. Ann Sc Norm Sup Pisa - Classe di Scienze, Ser. 3,1 no. 1–4:1–41Google Scholar
  153. 153.
    Faraday M (1831) On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces. Philos Tr R Soc S-A121:299Google Scholar
  154. 154.
    Farquharson FB, Smith, FC, Vincent GS (1950) Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge. Part II: Mathematical analyses. Bulletin 116. University of Washington Press, Engineering Experimental Station, Seattle, WAGoogle Scholar
  155. 155.
    Ferreira AJM, Roque CMC, Martins PALS (2004) Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos Struct 66:287–293Google Scholar
  156. 156.
    Fiedler L, Lacarbonara W, Vestroni F (2007) Vibration behavior of thick composite laminated plates subject to in-plane pre-stress loading. In: Proceedings of the DECT’07–2007 ASME Engineering Technical Conferences, DECT2007–35532, Las Vegas, Nevada, 4–7 September 2007Google Scholar
  157. 157.
    Fiedler L, Lacarbonara W, Vestroni F (2009) A general higher-order theory for multi-layered, shear-deformable composite plates. Acta Mech209:85–98Google Scholar
  158. 158.
    Fiedler L., Lacarbonara W., Vestroni F (2010) A generalized higher-order theory for buckling of thick multi-layered composite plates with normal and transverse shear strains. Compos Struct 92:3011–3020Google Scholar
  159. 159.
    Finlayson BA (1972) The method of weighted residuals and variational principles. Academic, New YorkGoogle Scholar
  160. 160.
    Foltinek K (1994) The Hamilton theory of elastica. Am J Math116:1479–1488MathSciNetGoogle Scholar
  161. 161.
    Fonda A, Schneider Z, Zanolin F (1994) Periodic oscillations for a nonlinear suspension bridge model. J Comput Appl Math52:113–140MathSciNetGoogle Scholar
  162. 162.
    Föppl A (1907) Vorlesungen über technische Mechanik, B.G. Teubner, Bd. 5., LeipzigGoogle Scholar
  163. 163.
    Formica G, Lacarbonara W, Alessi R (2010) Vibrations of carbon nanotube-reinforced composites. J Sound Vib 329:1875–1889Google Scholar
  164. 164.
    Formica G, Arena A, Lacarbonara W, Dankowicz H (2013) Coupling FEM with parameter continuation for analysis and bifurcations of periodic responses in nonlinear structures. J Comput Nonlin Dyn8, 021013Google Scholar
  165. 165.
    Frahm H (1911) Device for damping vibration of bodies, US Patent 989958Google Scholar
  166. 166.
    Fremond M (2002) Non-smooth thermomechanics. Springer, BerlinGoogle Scholar
  167. 167.
    Frisch-Fay R (1962) Flexible bars. Butterworths, Washington, D.CGoogle Scholar
  168. 168.
    Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, New YorkGoogle Scholar
  169. 169.
    Garcea G, Trunfio GA, Casciaro R (2002) Path-following analysis of thin-walled structures and comparison with asymptotic post-critical solutions. Int J Numer Methods Eng 55:73–100Google Scholar
  170. 170.
    Galerkin BG (1915) Series occurring in some problems of elastic stability of rods and plates. Eng Bull19:897–908Google Scholar
  171. 171.
    Ganapathi M, Makhecha DP (2001) Free vibration analysis of multi-layered composite laminates based on an accurate higher-order theory. Compos Part B-Eng32:535–543Google Scholar
  172. 172.
    Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics of cable-stayed beam. Int J Solids Struct40:4729–4748Google Scholar
  173. 173.
    Gattulli V, Lepidi M, Macdonald JHG, Taylor CA (2005) One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models, Int J Non-Linear Mech40:571–588Google Scholar
  174. 174.
    Gaudenzi P (1992) A general formulation of higher-order theories for the analysis of composite laminated plates. Compos Struct 20:103–112Google Scholar
  175. 175.
    Gaudenzi P, Barboni R, Mannini A (1995) A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates. Compos Struct 30:427–440Google Scholar
  176. 176.
    Ge Z, Kruse HP, Marsden JE (1996) The limits of Hamiltonian structures in three dimensional elasticity, shells, and rods. J Nonlinear Sci6:19–57MathSciNetGoogle Scholar
  177. 177.
    Gimsing NJ (1997) Cable supported bridges: concept and design, 2nd edn. Wiley, New YorkGoogle Scholar
  178. 178.
    Lanzara G, Yoon Y, Liu H, Peng S, Lee W-I (2009) Carbon nanotube reservoirs for self-healing materials. Nanotechnology20:335704Google Scholar
  179. 179.
    Glauert H (1947) The elements of Aerofoil and Airscrew theory, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  180. 180.
    Glover J, Lazer AC, McKenna PJ (1989) Existence and stability of large scale nonlinear oscillations in suspension bridges. ZAMP40:172–200MathSciNetGoogle Scholar
  181. 181.
    Goldstein H, Poole CP, Safko JL (2002) Classical mechanics, 3rd edn. Addison Wesley, ReadingGoogle Scholar
  182. 182.
    Guckenheimer J, Holmes P (1985) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New YorkGoogle Scholar
  183. 183.
    Hafka RT, Mallet RH, Nachbar W (1971) Adaptation of Koiter’s method to finite element analysis of snap-through buckling behaviour. Int J Solids Struct 7:1427–1447Google Scholar
  184. 184.
    Hale JK (1969) Ordinary differential equations. Wiley-Interscience, New YorkGoogle Scholar
  185. 185.
    Hall BD, Preidikman S, Mook DT, Nayfeh AH (2001) Novel strategy for suppressing the flutter oscillations of aircraft wings. AIAA J39:1843–1850Google Scholar
  186. 186.
    Han S-C, Tabiei A, Park W-T (2008) Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element. Compos Struct 82(3):465–474Google Scholar
  187. 187.
    Handbook (1986) Tethers in space. in Proceedings of the first International Conference on Tethers in Space, Sept 17–19, Arlington, VAGoogle Scholar
  188. 188.
    Handbook (1988) Space Tethers for Science in the Space Station Era, Societá Italiana di Fisica, Conference Proceedings, 14, BolognaGoogle Scholar
  189. 189.
    Hansen MH, Gaunaa M, Madsen HAA (2004) A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations, Report No. R -1354(EN), Risø National LaboratoryGoogle Scholar
  190. 190.
    Hartlen R, Currie I (1970) Lift-oscillator model for vortex-induced vibration. Proc Am Soc Civ Eng96:577–591Google Scholar
  191. 191.
    Hirai A, Okauchi I, Miyata T (1966) On the behaviour of suspension bridges under wind action. Paper No. 8. Int. Sypm. on Suspension Bridges, Lisbon, 240–256Google Scholar
  192. 192.
    Hodges DH, Dowell EH (1974) Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA TN D-7818 Google Scholar
  193. 193.
    Hodges DH, Atilgan AR, Danielson DA (1993) A geometrically nonlinear theory of elastic plates. J Appl Mech60:109–1126Google Scholar
  194. 194.
    Hodges DH, Atilgan AR, Danielson DA (1993) A geometrically nonlinear theory of elastic plates. J Appl Mech 60:109–116Google Scholar
  195. 195.
    Hodges DH (1999) Non-linear in-plane deformation and buckling of rings and high arches. Int J Non Linear Mech 34:723–737Google Scholar
  196. 196.
    Hodges DH, Wenbin Y, Mayuresh JP (2009) Geometrically-exact, intrinsic theory for dynamics of moving composite plates. Int J Solids Struct46:2036–2042Google Scholar
  197. 197.
    Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, ChichesterGoogle Scholar
  198. 198.
    Hsu CS (1963) On the parametric excitation of a dynamic system with multiple degrees of freedom. J Appl Mech30:367–372Google Scholar
  199. 199.
    Hua XG, Chen ZQ (2008) Full-order and multimode flutter analysis using ANSYS. Finite Elem Anal Des44:537–551Google Scholar
  200. 200.
    Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  201. 201.
    Ibrahim RA (2004) Nonlinear vibrations of suspended cables - Part III: Random excitation and interaction with fluid flow. Appl Mech Rev57:515–549Google Scholar
  202. 202.
    Ibrahim RA (2005) Liquid sloshing dynamics. Theory and applications. Cambridge University Press, CambridgeGoogle Scholar
  203. 203.
    Ibrahim RA (2008) Parametric random vibration. New York, DoverGoogle Scholar
  204. 204.
    Iooss G, Adelmeyer M (1992) Topics in bifurcation theory and applications. World Scientific, SingaporeGoogle Scholar
  205. 205.
    In-Soo S, Uchiyama Y, Yabuno H, Lacarbonara W (2008) Simply supported elastic beams under parametric excitation. Nonlinear Dynam 53:129–138MathSciNetGoogle Scholar
  206. 206.
    Irvine HM, Caughey TK (1974) The linear theory of free vibrations of a suspended cable. Proc R Soc London, Ser A 341:299–315Google Scholar
  207. 207.
    Irvine HM (1984) Cable structures. Dover Publications, New YorkGoogle Scholar
  208. 208.
    Iwan WD (1965) The steady-state response of the double bilinear hysteretic oscillator. J Appl Mech 32:921–925MathSciNetGoogle Scholar
  209. 209.
    Iwan WD, Blevins RD (1974) A model for vortex induced oscillation of structures. J Appl Mech Trans ASME41:581–586Google Scholar
  210. 210.
    Jacobs EN, Ward KE, Pinkerton RM (1933) The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA Report No. 460Google Scholar
  211. 211.
    Jacover D, McKenna PJ (1994) Nonlinear torsional flexings in a periodically forced suspended beam. J Comput Appl Math 52:241–265MathSciNetGoogle Scholar
  212. 212.
    Jensen JS (1998) Non-linear dynamics of the follower-loaded double pendulum with added support-excitation. J Sound Vib 215:125–142Google Scholar
  213. 213.
    Jones RM (1975) Mechanics of composite materials. McGraw-Hill Book Company, New YorkGoogle Scholar
  214. 214.
    Jones KF (1992) Coupled vertical and horizontal galloping. J Eng Mech-ASCE 118:92–106Google Scholar
  215. 215.
    Johnson MW Jr, Urbanik TJ (1984) A nonlinear theory for elastic plates with application to characterizing paper properties. J Appl Mech51:146–152Google Scholar
  216. 216.
    Kantorovich LV, Krylov VI (1964) Approximate methods of higher analysis. Interscience Publishers, New YorkGoogle Scholar
  217. 217.
    Kapitza PL (1965) Collected Papers of P.L. Kapitza, Edited by D. TerHarr, Pergamon Press, NYGoogle Scholar
  218. 218.
    Krauskopf B, Osinga HM, Galan-Vioque J (eds) (2007) Numerical continuation methods for dynamical systems. Springer and Canopus Publishing Limited, New YorkGoogle Scholar
  219. 219.
    Krylov N, Bogoliubov N (1935) Influence of resonance in transverse vibrations of rods caused by periodic normal forces at one end. Ukrainian Sc. Res. Inst. of Armament, Recueil Kiev.Google Scholar
  220. 220.
    Kevorkian J, Cole JD (1996) Multiple scale and singular perturbation methods. Springer, New YorkGoogle Scholar
  221. 221.
    Kienzler R, Bose DK (2008) Material conservation laws established within a consistent plate theory. In: Jaiani G, Podio-Guidugli P (eds) Proc symp int union of theoretical and applied mechanics on relations of shell plate beam and 3D models, Tbilisi, Georgia, April 23–27, 2007Google Scholar
  222. 222.
    Ko JW, Strganac TW; Kurdila AJ (1998) Stability and control of a structurally nonlinear aeroelastic system. J Guid Control Dynam21:718–725Google Scholar
  223. 223.
    Komatsu S, Sakimoto T (1977) Ultimate load carrying capacity of steel arches. J Struct Div-ASCE103(12):2323–2336Google Scholar
  224. 224.
    Koiter WT (1945) On the stability of elastic equilibrium. PhD Thesis, Delft. English translGoogle Scholar
  225. 225.
    Koiter WT (1970) On the stability of elastic equilibrium (Translation from Dutch). Tech. Rep. AFFDL-TR-70-25, Airforce Flight Dynamics LabGoogle Scholar
  226. 226.
    Koiter WT (1970) Comment on: The linear and non-linear equilibrium equations for thin elastic shells according to the Kirchhoff–Love hypotheses. Int J Mech Sci12:663–664Google Scholar
  227. 227.
    Kholostova OV (2009) On the motions of a double pendulum with vibrating suspension point. Mech Sol44:184–197Google Scholar
  228. 228.
    Krupa M, Poth W, Schagerl M, Steindl A, Steiner W, Troger H, Wiedermann G (2006) Modelling, dynamics and control of tethered satellite systems. Nonlinear Dynam 43:73–96MathSciNetGoogle Scholar
  229. 229.
    Kuhlmann G (2003) Ein hierarchisches inhomogenes Volumenelement zur Berechnung dickwandiger Faserverbunde. Ph.D. Thesis, Shaker Verlag, Aachen, GermanyGoogle Scholar
  230. 230.
    Yuri A. Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer, New-YorkGoogle Scholar
  231. 231.
    Hartman P (1982) Ordinary differential equations. Birkhaüser, BostonGoogle Scholar
  232. 232.
    Iyengar NGR (1998) Structural stability of columns and plates. Wiley, New YorkGoogle Scholar
  233. 233.
    Lacarbonara W, Chin CM, Nayfeh, AH (1997) Two-to-one internal resonances in parametrically excited buckled beams. AIAA Paper No. 97–1081, 38th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conf, Kissimmee, FLGoogle Scholar
  234. 234.
    Lacarbonara W, Nayfeh AH, Kreider W (1998) Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam. Nonlinear Dynam 17:95–117Google Scholar
  235. 235.
    Lacarbonara W (1999) Direct treatment and discretizations of non-linear spatially continuous systems. J Sound Vib 221:849–866MathSciNetGoogle Scholar
  236. 236.
    Lacarbonara W, Vestroni F (2002) Feasibility of a vibration absorber based on hysteresis. In: Proceedings of Third World Congress on Structural Control, Como, April 7–12, 2002Google Scholar
  237. 237.
    Lacarbonara W, Rega G, Nayfeh AH (2003) Resonant nonlinear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int J Non Linear Mech 38:851–872Google Scholar
  238. 238.
    Lacarbonara W, Rega G (2003) Resonant nonlinear normal modes. Part II: activation/orthogonality conditions for shallow structural systems. Int J Non Linear Mech 38: 873–887Google Scholar
  239. 239.
    Lacarbonara W, Chin CM, Soper RR (2002) Open-loop nonlinear vibration control of shallow arches via perturbation approach. J Appl Mech 69:325–334MathSciNetGoogle Scholar
  240. 240.
    Lacarbonara W, Vestroni F (2003) Nonclassical responses of oscillators with hysteresis. Nonlinear Dynam 32:235–258Google Scholar
  241. 241.
    Lacarbonara W, Bernardini D, Vestroni, F (2004) Nonlinear thermomechanical oscillations of shape-memory devices. Int J Solids Struct 41:1209–1234Google Scholar
  242. 242.
    Lacarbonara W, Paolone A, Yabuno, H (2004) Modeling of planar nonshallow prestressed beams towards asymptotic solutions. Mech Res Commun 31:301–310Google Scholar
  243. 243.
    Lacarbonara W, Camillacci R (2004) Nonlinear normal modes of structural systems via asymptotic approach. Int J Solids Struct 41:5565–5594Google Scholar
  244. 244.
    Lacarbonara W, Arafat HN, Nayfeh AH (2005) Nonlinear interactions in imperfect beams at veering. Int J Non Linear Mech 40:987–1003Google Scholar
  245. 245.
    Lacarbonara W, Paolone A, Vestroni F (2005) Galloping instabilities in geometrically nonlinear cables under steady wind forces, Paper. No. 20th ASME Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA, Sept 25–28Google Scholar
  246. 246.
    Lacarbonara W, Yabuno H (2006) Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int J Solids Struct 43:5066–5084Google Scholar
  247. 247.
    Lacarbonara W, Yabuno H, Hayashi K (2007) Nonlinear cancellation of the parametric resonance in elastic beams: theory and experiment. Int J Solids Struct 44:2209–2224Google Scholar
  248. 248.
    Lacarbonara W, Antman SS (2007) Parametric resonances of nonlinearly viscoelastic rings subject to a pulsating pressure. 21st ASME DETC Conf, No. DETC2007-35245, Las Vegas, USAGoogle Scholar
  249. 249.
    Lacarbonara W, Paolone A, Vestroni F (2007) Elastodynamics of nonshallow suspended cables: linear modal properties. J Vib Acoust 129:425–433Google Scholar
  250. 250.
    Lacarbonara W, Paolone A, Vestroni F (2007) Nonlinear modal properties of nonshallow cables. Int J Non Linear Mech 42:542–554Google Scholar
  251. 251.
    Lacarbonara W, Colone V (2007) Dynamic response of arch bridges traversed by high-speed trains. J Sound Vib 304:72–90Google Scholar
  252. 252.
    Lacarbonara W, Paolone A (2007) Solution strategies to Saint–Venant problem. J Comput Appl Math 206:473–497MathSciNetGoogle Scholar
  253. 253.
    Lacarbonara W (2008) Buckling and post-buckling of non-uniform non-linearly elastic rods. Int J Mech Sci 50:1316–1325Google Scholar
  254. 254.
    Lacarbonara W, Pacitti A (2008) Nonlinear modeling of cables with flexural stiffness. Math Probl Eng, Article ID 370767, 21 pages, 2008. doi:10.1155/2008/370767Google Scholar
  255. 255.
    Lacarbonara W, Antman, SS (2012) Parametric instabilities of the radial motions of nonlinearly viscoelastic shells subject to pulsating pressures. Int J Non Linear Mech 47:461–472Google Scholar
  256. 256.
    Lacarbonara W, Ballerini S (2009) Vibration mitigation of a guyed mast via tuned pendulum dampers. Struct Eng Mech 32Google Scholar
  257. 257.
    Lacarbonara W, Arena A (2011) Flutter of an arch bridge via a fully nonlinear continuum formulation. J Aerospace Eng 24:112–123Google Scholar
  258. 258.
    Lacarbonara W, Pasquali M (2011) A geometrically exact formulation for thin multi-layered laminated composite plates. Compos Struct 93:1649–1663Google Scholar
  259. 259.
    Lacarbonara W, Antman SS (2007) Parametric resonances of nonlinearly viscoelastic rings subject to a pulsating pressure. Paper DETC 2007–35245, 21th ASME Biennial Conf. on Mechanical Vibration and NoiseGoogle Scholar
  260. 260.
    Lacarbonara W, Antman SS (2008) What is parametric resonance in structural dynamics. Proceedings of the 6th Euromech Nonlinear Dynamics Conf., St. Petersburg, RussiaGoogle Scholar
  261. 261.
    Lacarbonara W, Arvin, H, Bakhtiari-Nejad, F (2012) A geometrically exact approach to the overall dynamics of elastic rotating blades – part 1: linear modal properties. Nonlinear Dynam, 70:659–675Google Scholar
  262. 262.
    Lacarbonara W, Cetraro M (2011) Flutter control of a lifting surface via visco-hysteretic vibration absorbers. Int J Aeronautical Space Sci12(4):331–345Google Scholar
  263. 263.
    Lagoudas DC (ed) (2010) Shape memory alloys: modeling and engineering applications. Springer, New YorkGoogle Scholar
  264. 264.
    Lanzo AD, Garcea G, Casciaro R (1995) Koiter post–buckling analysis of elastic plates. Int J Numer Methods Eng 38:2325–2345Google Scholar
  265. 265.
    Lau DT, Cheung MS, Cheng SH (2000) 3D flutter analysis of bridges by spline finite-strip method. J Struct Eng-ASCE 126:1246–1254Google Scholar
  266. 266.
    Lazer AC, McKenna PJ (1990) Large-amplitude periodic oscillations in suspension bridges: some new connection with nonlinear analysis. SIAM Rev32:537–578MathSciNetGoogle Scholar
  267. 267.
    Lee HK, Simunovic S (2001) A damage constitutive model of progressive debonding in aligned discontinuous fiber composites. Int J Solids Struct 38:875–895Google Scholar
  268. 268.
    Lee CL, Perkins NC (1995) Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dynam 8:45–63MathSciNetGoogle Scholar
  269. 269.
    Lee J (1997) Thermally induced buckling of laminated composites by a layer-wise theory. Compos Struct 65:917–922Google Scholar
  270. 270.
    Lee SY, Kuo YH (1991) Elastic stability of non-uniform columns. J Sound Vib 148:11–24Google Scholar
  271. 271.
    Leipholz H (1970) Stability theory. Academic, New YorkGoogle Scholar
  272. 272.
    Leissa AW (1969) Vibration of plates. NASA SP-160Google Scholar
  273. 273.
    Li H, Balachandran B (2006) Buckling and free oscillations of composite microresonators. J Microelectromech Syst15:42–51Google Scholar
  274. 274.
    Li H, Balachandran B (2006) Buckling and free oscillations of composite microresonators. J Microelectromech S15:42–51Google Scholar
  275. 275.
    Li H, Preidikman S, Balachandran B, Mote Jr. CD (2006) Nonlinear free and forced oscillations of piezoelectric microresonators. J Micromech Microeng16:356–367Google Scholar
  276. 276.
    Li QS, Cao H, Li G (1994) Stability analysis of bars with multi-segments of varying cross-section. Comput Struct53:1085–1089Google Scholar
  277. 277.
    Li QS, Cao H, Li G (1995) Stability analysis of bars with varying cross-section. Int J Solids Struct 32:3217–3228Google Scholar
  278. 278.
    Li QS, Cao H, Li G (1996) Static and dynamic analysis of straight bars with variable cross-section. Comput Struct59:1185–1191Google Scholar
  279. 279.
    Li QS (2000) Buckling analysis of multi-step non-uniform beams. Adv Struct Engng3: 139–144Google Scholar
  280. 280.
    Love AEH (1906) The mathematical theory of elasticity. Cambridge University Press, CambridgeGoogle Scholar
  281. 281.
    Lubarda VA (2004) Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl Mech Rev57:95–108Google Scholar
  282. 282.
    Luongo A, Rega G, Vestroni F (1984) Planar non-linear free vibrations of an elastic cable. Int J Non Linear Mech 19:39–52Google Scholar
  283. 283.
    Luongo A, Rega G, Vestroni F (1986) On nonlinear dynamics of planar shear undeformable beams. J Appl Mech 108:619–624Google Scholar
  284. 284.
    Luongo A, Rega G, Vestroni F (1984) Planar non-linear free vibrations of an elastic cable. Int J Non Linear Mech 19:39–52Google Scholar
  285. 285.
    Luongo A, Paolone A, Piccardo G (1998) Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica33:229–242Google Scholar
  286. 286.
    Luongo A, Vestroni F (1994) Nonlinear free periodic oscillations of a tethered satellite system. J Sound Vib 175(3):299–315Google Scholar
  287. 287.
    Luongo A (1997) Appunti di Meccanica delle Strutture. Lecture Notes (in Italian), L’AquilaGoogle Scholar
  288. 288.
    Luongo A, Paolone A (2005) Scienza delle costruzioni, vol. 2: Il problema di de Saint Venant (in Italian). CEA, MilanGoogle Scholar
  289. 289.
    Ma C, Huang C (2004) Experimental whole-field interferometry for transverse vibration of plates. J Sound Vib 271:493–506Google Scholar
  290. 290.
    McComber P, Paradis A (1998) A cable galloping model for thin ice accretions. Atmos Res46:13–25Google Scholar
  291. 291.
    McConnell KG, Chang CN (1986) A study of the axial-torsional coupling effect on a sagged transmission line. Exp Mech26:324–328Google Scholar
  292. 292.
    Magnus W, Winkler DT (1966) Hill’s equation. Wiley-Interscience, New YorkGoogle Scholar
  293. 293.
    Mailybaev AA, Yabuno H, Kaneko H (2004) Optimal shapes of parametrically excited beams. Struct Multidisciplinary Optim27(6):435–445MathSciNetGoogle Scholar
  294. 294.
    Makhecha DP, Ganapathi M, Patel BP (2001) Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory. Compos Struct 51:221–236Google Scholar
  295. 295.
    Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood CiffsGoogle Scholar
  296. 296.
    Mannini C, Bartoli G, Borri C, Borsani A, Ferrucci M, Procino L (2009) Recent developments in measurement and identification of bridge deck flutter derivatives. U. Peil, ed., WtG Berichte Nr. 11 - Windingenieurwesen in Forschung und Praxis, Dreiländertagung D-A-CH, Braunschweig, Germany, 1–15Google Scholar
  297. 297.
    Marzocca P, Librescu L, Silva WA (2002) Flutter, postflutter, and control of a supersonic wing section. J Guid Contr Dynam25:962–970Google Scholar
  298. 298.
    Marzouk OA, Nayfeh AH, Arafat HN, Akhtar I (2007) Modeling steady-state and transient forces on a cylinder. J Vib Control 13:1065–1091Google Scholar
  299. 299.
    Marzouk OA, Nayfeh AH (2009) Reduction of the loads on a cylinder undergoing harmonic in-line motion. Phys Fluids21:083103-13Google Scholar
  300. 300.
    Marzouk OA, Nayfeh AH (2010) Characterization of the flow over a cylinder moving harmonically in the cross-flow direction. Int J Non Linear Mech 45:821–833Google Scholar
  301. 301.
    Masri SF (1975) Forced vibration of the damped bilinear hysteretic oscillator. J Acoust Soc Am 57:106–111Google Scholar
  302. 302.
    Matsunaga H (1994) Free vibration and stability of thick elastic plates subjected to in-plane forces. Int J Solids Struct 31(22):3113–3124Google Scholar
  303. 303.
    Matsunaga H (1997) Buckling instabilities of thick elastic plates subjected to in-plane stresses. Compos Struct 62(1):205–214MathSciNetGoogle Scholar
  304. 304.
    Matsunaga H (2000) Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos Struct 48(4):231–244Google Scholar
  305. 305.
    Matsunaga H (2001) Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses. Int J Mech Sci 43:1925–1944Google Scholar
  306. 306.
    Matsunaga, H (2002) Vibration of cross-ply laminated composite plates subjected to initial in-plane stresses. Thin Wall Struct40:557–571Google Scholar
  307. 307.
    Matsunaga H (2006) Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos Struct 72:177–192Google Scholar
  308. 308.
    Matsunaga H (2007) Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading. Compos Struct 77:249–262Google Scholar
  309. 309.
    MATHEMATICA (2007) Wolfram Research Inc. Urbana Champaign, ILGoogle Scholar
  310. 310.
    McKenna PJ, Walter W (1987) Nonlinear oscillations in a suspension bridge. Arch Rat Mech Anal98:167–177MathSciNetGoogle Scholar
  311. 311.
    McLachlan NW (1962) Theory and application of mathieu functions. Dover, New YorkGoogle Scholar
  312. 312.
    Meirovitch L (1970) Methods of analytical dynamics. Mc-Graw-Hill, New YorkGoogle Scholar
  313. 313.
    Melan J (1853) Theorie der eisernen bogenbrücken und der hangebrücken. Leipzig. (1913) Theory of arches and suspension bridges. Translated by D B Steinman, Myron C. Clark, ChicagoGoogle Scholar
  314. 314.
    Melde W (1859) Über Erregung stehender Wellen eines fadenförmigen Körpers. Ann Phys Chem 109:193–215Google Scholar
  315. 315.
    Mathieu E (1868) Mémoire sur le movement vibratoire d’une membrane de forme elliptique. J Math Pures Appl137–203Google Scholar
  316. 316.
    Mettler E (1962) Dynamic buckling. In: Flugge (ed) Handbook of engineering mechanics. McGraw-Hill, New YorkGoogle Scholar
  317. 317.
    Mikhlin SG (1964) Variational methods in mathematical physics. Pergamon, OxfordGoogle Scholar
  318. 318.
    Miles J (1985) Parametric excitation of an internally resonant double pendulum. Z Angew Math Phys36:337–345MathSciNetGoogle Scholar
  319. 319.
    Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. NASA Technical Paper 1903, Hampton, VAGoogle Scholar
  320. 320.
    Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech38:31–38Google Scholar
  321. 321.
    Mishra SS, Kumar K, Krishna P (2008) Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives. J Wind Eng Ind Aerodyn 96:83–102Google Scholar
  322. 322.
    Mittelmann HD, Roose D (eds) (1990) Continuation techniques and bifurcation problems, vol 92. ISNM, BirkhäuserGoogle Scholar
  323. 323.
    Miyata T (2003) Historical view of long-span bridge aerodynamics. J Wind Eng Ind Aerodyn 91:1393–1410Google Scholar
  324. 324.
    Mohr GA (1992) Finite elements for solids, fluids and optimization. Oxford University Press, OxfordGoogle Scholar
  325. 325.
    Moisseiff LS, Leinhard, F (1933) Suspension bridges under the action of lateral forces, with discussion. Trans Am Soc Civ Eng98:1080–1141Google Scholar
  326. 326.
    Moon FC (2004) Chaotic vibrations. Wiley, New YorkGoogle Scholar
  327. 327.
    Morley A (1917) Critical loads for long tapering struts. Engineering104:295Google Scholar
  328. 328.
    Murdock JA (1991) Perturbations. Wiley, New YorkGoogle Scholar
  329. 329.
    Naghdi PM (1972) The theory of shells and plates. In Truesdell S (ed) Flügges Encyclopedia of Physics, vol VI a/2. Springer, New York, pp 425–640Google Scholar
  330. 330.
    Nayfeh AH (1973) Perturbation methods. Wiley, New YorkGoogle Scholar
  331. 331.
    Nayfeh AH, Mook DT, Lobitz DW (1974) Numerical-perturbation method for the nonlinear analysis of structural vibrations. AIAA J 12:1222–1228Google Scholar
  332. 332.
    Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New YorkGoogle Scholar
  333. 333.
    Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New YorkGoogle Scholar
  334. 334.
    Nayfeh AH, Pai PF (1989) Non-linear non-planar parametric responses of an inextensional beam. Int J Non Lin Mech24(2):139–158Google Scholar
  335. 335.
    Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics. Wiley-Interscience, New YorkGoogle Scholar
  336. 336.
    Nayfeh AH, Lacarbonara W (1998) On the discretization of spatially continuous systems with quadratic and cubic nonlinearities. JSME Int J C-Dyn Con 41:510–531Google Scholar
  337. 337.
    Nayfeh AH (2000) Nonlinear interactions. analytical, computational, and experimental methods. Wiley-Interscience, New YorkGoogle Scholar
  338. 338.
    Nayfeh AH, Arafat H, Chin, CM, Lacarbonara W (2002) Multimode interactions in suspended cables. J Vib Control 8:337–387MathSciNetGoogle Scholar
  339. 339.
    Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, New YorkGoogle Scholar
  340. 340.
    Nayfeh AH, Arafat HN (2005) Nonlinear dynamics of closed spherical shells, Paper. No. DETC2005-85409. In: Proceedings of the 20th ASME Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA, Sept. 25–28Google Scholar
  341. 341.
    Navier CLMHL (1823) Rapport et mémoire sur le ponts suspendus. Paris, Imprimerie RoyaleGoogle Scholar
  342. 342.
    Nazmy AS (1997) Stability and load-carrying capacity of three-dimensional long-span steel arch bridges. Comput Struct65(6):857–868Google Scholar
  343. 343.
    Nemat-Nasser S, Shatoff HD (1973) Numerical analysis of pre- and post-critical response of elastic continua at finite strains. Comput Struct 3:983–999Google Scholar
  344. 344.
    Ng L, Rand RH (2002) Bifurcations in a Mathieu equation with cubic nonlinearities. Chaos Soliton Fract 14:173–181MathSciNetGoogle Scholar
  345. 345.
    Noda N, Hetnarski RB, Tanigawa Y (2003) Thermal stresses, 2nd edn. Taylor & Francis, New YorkGoogle Scholar
  346. 346.
    Noor, AK, Burton, WS (1989) Assessment of shear deformation theories for multilayered composite plates. Appl Mech Rev 42(1):1–13Google Scholar
  347. 347.
    Nosier A, Kapania RK, Reddy JN (1993) Free vibration analysis of laminated plates using a layer-wise theory. AIAA J 31(12):2335–2346Google Scholar
  348. 348.
    Pagano NJ (1969) Exact solutions for composite laminates in cylindrical bending. J Compos Mater3:398–411Google Scholar
  349. 349.
    Pagano NJ (1970) Exact solutions for rectangular bidirectional composites and sandwich plates. J Compos Mater4:20–34Google Scholar
  350. 350.
    Pagano NJ, Hatfield SJ (1972) Elastic behavior of multi-layered bidirectional composites. AIAA J 10:931–933Google Scholar
  351. 351.
    Paolone A, Vasta M, Luongo A (2006) Flexural-torsional bifurcations of a cantilever beam under potential and circulatory forces I. Non-linear model and stability analysis. Int J Non Linear Mech 41:586–594Google Scholar
  352. 352.
    Pandya BN, Kant T (1988) Flexural analysis of laminated composites using refined higher-order C 0 plate bending elements. Comput Method Appl M 66:173–198Google Scholar
  353. 353.
    Pasca M, Pignataro M, Luongo A (1991) Three-dimensional vibrations of tethered satellite system. J Contr Guid14(2):312–320Google Scholar
  354. 354.
    Pasca M, Vestroni F, Luongo A (1996) Stability and bifurcations of transversal motions of an orbiting string with a longitudinal force. Appl Math Mech ZAMM76(4):337–340Google Scholar
  355. 355.
    Pasquali M (2010) Geometrically exact models of thin plates towards nonlinear dynamic system identification via higher-order spectral approach. MS Thesis. Sapienza University of RomeGoogle Scholar
  356. 356.
    Pasquali M, Lacarbonara W, Marzocca P (2011) System identification of plates using higher-order spectra: numerical and experimental investigations. Paper No. 945175, 52nd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conference, Denver, CO, April 4–7Google Scholar
  357. 357.
    Pasquali M, Lacarbonara W, Marzocca P (2011) Advanced system identification of plates using a higher-order spectral approach: theory and experiment. Paper no. DETC2011-47975, 2011 ASME DETC, Washington DC, August 28–31Google Scholar
  358. 358.
    Patil MJ, Hodges D (2004) On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. J Fluid Struct19:905–915Google Scholar
  359. 359.
    Pellicano F, Amabili M (2006) Dynamic instability and chaos of empty and fluid-filled circular cylindrical shells under periodic axial loads. J Sound Vib 293:227–252Google Scholar
  360. 360.
    Petrangeli MP and Associates (2008) Ponte della Musica: Verifica delle strutture in acciaio dell’arco, dell’impalcato e della soletta. codifica E281004300SXA, RomeGoogle Scholar
  361. 361.
    Petrolito J (1998) Approximate solutions of differential equations using Galerkin’s method and weighted residuals. Int J Mech Eng Educ 28:14–26Google Scholar
  362. 362.
    Picone M (1928) Sul metodo delle minime potenze ponderate e sul metodo di Ritz per il calcolo approssimato nei problemi della fisica-matematica. Rend Circ Mat Palermo 52: 225–253Google Scholar
  363. 363.
    Pignataro M, Rizzi N, Luongo A (1990) Bifurcation, stability and postcritical behaviour of elastic structures. Elsevier Science Publishers, AmsterdamGoogle Scholar
  364. 364.
    Pilipchuk VN, Ibrahim RA (1999) Non-linear modal interactions in shallow suspended cables. J Sound Vib 227:1–28Google Scholar
  365. 365.
    Pfeil MS, Batista RC (1995) Aerodynamic stability analysis of cable-stayed bridges. J Struct Eng-ASCE 121:1748–1788Google Scholar
  366. 366.
    Podio-Guidugli P, Virga EG (1987) Transversely isotropic elasticity tensors. Proc R Soc London, Ser A 411:85–93MathSciNetGoogle Scholar
  367. 367.
    Podio-Guidugli P (1989) An exact derivation of the thin plate equation. J Elast 22:121–133MathSciNetGoogle Scholar
  368. 368.
    Preidikman S, Mook DT (1997) A new method for actively suppressing flutter of suspension bridges J Wind Eng Ind Aerodyn 69/71:955–974Google Scholar
  369. 369.
    Preidikman S, Mook DT (1998) On the development of a passive-damping system for wind-excited oscillations of long span bridges J Wind Eng Ind Aerodyn 77/78:443–456Google Scholar
  370. 370.
    Proceedings (1995) of the 4th International Conference on Tethers in Space, April 10–14, Washington DCGoogle Scholar
  371. 371.
    Pugsley A (1968) The theory of suspension bridges, 2d edn. Edward Arnold, LondonGoogle Scholar
  372. 372.
    Pugno N, Schwarzbart M, Steindl A, Troger H (2009) On the stability of the track of the space elevator. Acta Astronautica64:524–537Google Scholar
  373. 373.
    Quarteroni A, Sacco, R, Saleri, F (2007) Numerical mathematics. Springer, BerlinGoogle Scholar
  374. 374.
    Ramania DV, Keitha WL, Rand RH (2004) Perturbation solution for secondary bifurcation in the quadratically-damped Mathieu equation. Int J Non Lin Mech 39:491–502Google Scholar
  375. 375.
    Rand RH (1996) Dynamics of a nonlinear parametrically-excited PDE: 2-term truncation. Mech Res Commun 23:283–289MathSciNetGoogle Scholar
  376. 376.
    Rand RH, Armbruster D (1987) Perturbation methods, bifurcation theory, and computer algebra. Springer, New YorkGoogle Scholar
  377. 377.
    Reddy JN (1984) A simple higher-order theory for laminated composite plates. Trans ASME J Appl Mech 51:745–752Google Scholar
  378. 378.
    Reddy JN (2004) Mechanics of laminated composite plates and shells, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  379. 379.
    Rega G, Lacarbonara W, Nayfeh AH (2000) Reduction methods for nonlinear vibrations of spatially continuous systems with initial curvature. Solid mechanics and its applications vol 77. Kluwer, Dordrecht, p 235Google Scholar
  380. 380.
    Rega G (2004) Nonlinear vibrations of suspended cables - Part I: Modeling and analysis. Part II: Deterministic phenomena. Appl Mech Rev 57:443–479Google Scholar
  381. 381.
    Rega G, Lacarbonara W, Nayfeh AH, Chin CM (1999) Multiple resonances in suspended cables: direct versus reduced-order models. Int J Non Linear Mech 34:901–924Google Scholar
  382. 382.
    Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12:69–77MathSciNetGoogle Scholar
  383. 383.
    Ricks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15:529–551Google Scholar
  384. 384.
    Rodrigues O (1840) Des lois géometriques qui régissent les déplacements d’un systeme solide dans l’espace. J de Math (Liouville) 5:380–440Google Scholar
  385. 385.
    Sabzevari A, Scanlan RH (1968) Aerodynamic instability of suspension bridges. J Eng Mech-ASCE 94:489–517Google Scholar
  386. 386.
    Saito H, Sato K, Otomi K (1976) Nonlinear forced vibrations of a beam carrying concentrated mass under gravity. J Sound Vib46(4):515–525Google Scholar
  387. 387.
    Salinger AG, Burroughs EA, Pawlowski RP, Phipps ET, Romero LA (2005) Bifurcation tracking algorithms and software for large scale applications. J Bifur Chaos Appl Sci Engrg15(3):1015–1032MathSciNetGoogle Scholar
  388. 388.
    Salvatori L, Borri C (2007) Frequency- and time-domain methods for the numerical modeling of full-bridge aeroelasticity. Comput Struct 85:675–687Google Scholar
  389. 389.
    Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Springer, New YorkGoogle Scholar
  390. 390.
    Sanjuán MAF (1998) Using nonharmonic forcing to switch the periodicity in nonlinear systems. Phys Rev E58:4377–4382MathSciNetGoogle Scholar
  391. 391.
    Sarkar PP, Caracoglia L, Haan FL, Sato H, Murakoshid J (2009) Comparative and sensitivity study of flutter derivatives of selected bridge deck sections. Part 1: Analysis of inter-laboratory experimental data. Eng Struct 31:158–169Google Scholar
  392. 392.
    Sartorelli JC, Lacarbonara W (2012) Parametric resonances in a base-excited double pendulum, Nonlinear Dynam 69:1679–1692MathSciNetGoogle Scholar
  393. 393.
    Scanlan RH (1987) Interpreting aeroelastic models of cable-stayed bridges. J Eng Mech-ASCE 113:555–575Google Scholar
  394. 394.
    Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B69:235406-10Google Scholar
  395. 395.
    Seyranian AP, Yabuno H, Tsumoto K (2005) Instability and periodic motion of a physical pendulum with a vibrating suspension point (theoretical and experimental approach). Dokl Phys50(9):467–472MathSciNetGoogle Scholar
  396. 396.
    Somnay R, Ibrahim RA, Banasik RC (2006) Nonlinear dynamics of a sliding beam on two isolators. J Vib Control 12:685–712Google Scholar
  397. 397.
    Strømmen E, Hjoorth-Hansen E (1995) The buffeting wind loading of structural members at an arbitrary attitude in the flow. J Wind Eng Ind Aerodyn56:267–290Google Scholar
  398. 398.
    Scanlan RH, Tomko JJ (1971) Airfoil and bridge deck flutter derivates. J Eng Mech-ASCE 97:1717–1737Google Scholar
  399. 399.
    Selberg A (1961) Oscillation and aerodynamic stability of suspension bridges. Acta Polytechnica Scandinavia 308Google Scholar
  400. 400.
    Seydel R (1994) Practical bifurcation and stability analysis. From equilibrium to chaos, 2nd edn. Springer, New YorkGoogle Scholar
  401. 401.
    Seyranian AP (2001) Regions of resonance for Hill’s equation with damping. Dokl Ross Akad Nauk 376:44–47Google Scholar
  402. 402.
    Shilov GE, Gurevich BL (1977) Integral, measure and derivative: a unified approach. In: Silverman RA (ed) Dover books on advanced mathematics. Dover Publications, New YorkGoogle Scholar
  403. 403.
    Shufrin I, Rabinovitch O, Eisenberger M (2009) Elastic nonlinear stability analysis of thin rectangular plates through a semi-analytical approach. Int J Solids Struct46:2075–2092Google Scholar
  404. 404.
    Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamical problem. Part I. Comput Method Appl M 49:55–70Google Scholar
  405. 405.
    Simo JC, Marsden JE, Krishnaprasad PS (1988) The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods and plates. Arch Ration Mech Anal104:125–183MathSciNetGoogle Scholar
  406. 406.
    Simiu E, Scanlan R (1996) Wind effects on structures. Fundamentals and applications to design, 3rd edn. Wiley-Interscience Publication, New YorkGoogle Scholar
  407. 407.
    Skeldon AC (1994) Dynamics of a parametrically excited double pendulum. Phys D75: 541–558MathSciNetGoogle Scholar
  408. 408.
    Skop RA, Griffin OM (1973) A model for the vortex-excited resonant response of bluff cylinders. J Sound Vib 27:225–233Google Scholar
  409. 409.
    Smith HJ, Blackburn JA, Grnbech-Jensen N (1992) Stability and Hopf bifurcations in an inverted pendulum. Am J Phys60:903–908Google Scholar
  410. 410.
    Stachowiak T, Okada T (2006) A numerical analysis of chaos in the double pendulum. Chaos Soliton Fract29:417–422Google Scholar
  411. 411.
    Stephenson A (1906) On a class of forced oscillations. Q J Math 37:353–360Google Scholar
  412. 412.
    Stephenson A (1908) On a new type of dynamic stability. Mem Proc Manch Lit Phil Soc 52: 1–10Google Scholar
  413. 413.
    Steinman DB (1934) A generalized deflection theory for suspension bridges. Trans Am Soc Civ Eng March:1133–1170Google Scholar
  414. 414.
    Steinman DB (1946) Design of bridges against wind: V. Criteria for assuring aerodynamic stability. Civil Eng ASCE February:68–76Google Scholar
  415. 415.
    Stevens KK (1966) On linear ordinary differential equations with periodic coefficients. SIAM J Appl Math14:782–795MathSciNetGoogle Scholar
  416. 416.
    Stojanovic R (1972) Nonlinear thermoelasticity. Springer, WienGoogle Scholar
  417. 417.
    Structural Engineers Association of California (1995) Performance-based seismic engineering of buildings. Vision 2000 Report. SEAOC Publications, SacramentoGoogle Scholar
  418. 418.
    Strutt JWS (Lord Rayleigh) (1883) On maintained vibrations. Phil Mag 15:229–235Google Scholar
  419. 419.
    Strutt JWS (Lord Rayleigh) (1887) On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Phil Mag 24:145–159Google Scholar
  420. 420.
    Struble RA (1962) Nonlinear differential equations. McGraw-Hill, New YorkGoogle Scholar
  421. 421.
    Sugimoto N (1981) Nonlinear theory for flexural motions of this elastic plate. J Appl Mech 48:377–382Google Scholar
  422. 422.
    Synge JL, Chien WZ (1941) The intrinsic theory of elastic shells and plates. Theodore von Karman Anniversary Volume, California Institute of Technology, 103–120Google Scholar
  423. 423.
    Tang DM, Dowell EH (2001) Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J 39(8):1430–1441Google Scholar
  424. 424.
    Tang DM, Dowell EH (2002) Experimental and theoretical study of gust response for high-aspect-ratio wing. AIAA J 40(3):419–429Google Scholar
  425. 425.
    Tang DM, Dowell EH (2004) Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. J Fluid Struct19:291–306Google Scholar
  426. 426.
    Task Committee on Cable-Suspended Structures (1977) Commentary on the tentative recommendations for cable-stayed bridge structures. J Struct Div Proc ASCE103:941–959Google Scholar
  427. 427.
    Theodorsen T (1931) On the theory of wing section with particular reference to the lift distribution. JNACA REPORT No. 383Google Scholar
  428. 428.
    Theodorsen T (1931) Theory of wing section of arbitrary shape. JNACA REPORT No. 411Google Scholar
  429. 429.
    Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. JNACA REPORT No. 496Google Scholar
  430. 430.
    Thompson JMT, Walker AC (1969) A general theory for the branching analysis of discrete structural systems. Int J Solids Struct 5:281–288Google Scholar
  431. 431.
    Thompson JMT (1989) Chaotic phenomena triggering the escape from a potential well. Proc R Soc London, Ser A 421:195–225Google Scholar
  432. 432.
    Timoshenko SP (1908) Buckling of bars of variable cross section. Bulletin of the Polytechnic Institute, Kiev, USSRGoogle Scholar
  433. 433.
    Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New YorkGoogle Scholar
  434. 434.
    Timoshenko SP, Young DH (1965) Theory of structures, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  435. 435.
    Troger H, Steindl A (1991) Nonlinear stability and bifurcation theory. Springer, WienGoogle Scholar
  436. 436.
    Triantafyllou MS, Howell CT (1994) Dynamic response of cables under negative tension: an ill-posed problem. J Sound Vib 173:433–447Google Scholar
  437. 437.
    Truesdell C (1954) A new chapter in the theory of the elastica. In Proc. 1st Midwestern Conf. Solid Mech. 52–54Google Scholar
  438. 438.
    Trusdell C, Toupin RA (1960) The classical field theories. In: Flugge S (ed) Encyclopedia of physics, vol III/1. Springer, Berlin, pp 226–793Google Scholar
  439. 439.
    Truesdell C, Noll N (1965) The nonlinear field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, Band vol III/3. Springer, BerlinGoogle Scholar
  440. 440.
    Tuc̆ková M, Tuc̆ek J,, Tuc̆ek P, Kubác̆ek L (2011) Experimental design of hysteresis loop measurements of nanosized ε-Fe2O3/SiO3 A statistically-based approach towards precise evaluation of ε-Fe2O3/SiO3 hysteresis loop parameters. In: NanoCon 2011, Sept 21–23, Brno, Czech RepublicGoogle Scholar
  441. 441.
    Ukeguchi N, Sakata H, Nishitani H (1966) An investigation of aeroelastic instability of suspension bridges. Int. Symp. on Suspension Bridges, Lisbon, Paper No. 11, 79–100Google Scholar
  442. 442.
    UNI EN 1991-1-7: Part 1-7: Azioni in generale - Azioni eccezionali (2006)Google Scholar
  443. 443.
    UNI EN 1991-2: Part 2: Carichi da traffico sui ponti (2005)Google Scholar
  444. 444.
    van der Pol B (1927) On relaxation-oscillations. London Edinburgh Dublin Phil Mag J Sci2(7):978–992Google Scholar
  445. 445.
    Vaziri HH, Xie J (1992) Buckling of columns under variably distributed asial loads. Comput Struct45:505–509Google Scholar
  446. 446.
    Verhulst F (1990) Nonlinear differential equations and dynamical systems. Springer, BerlinGoogle Scholar
  447. 447.
    Vestroni F, Luongo A, Pasca M (1995) Stability and control of transversal oscillations of a tethered satellite system. Appl Math Comp70(2):343–360MathSciNetGoogle Scholar
  448. 448.
    Vestroni F, Lacarbonara W, Carpineto N (2011) Hysteretic tuned-mass damper device (TMD) for passive control of mechanical vibrations, Italian PatentGoogle Scholar
  449. 449.
    Vijayaraghavan A, Evan-Iwanowski RM (1967) Parametric instability of circular cylindrical shells. J Appl Mech985–990Google Scholar
  450. 450.
    Villaggio P (1997) Mathematical models for elastic structures. Cambridge University Press, CambridgeGoogle Scholar
  451. 451.
    Visintin A (1994) Differential models of hysteresis. Springer, BerlinGoogle Scholar
  452. 452.
    Vlasov VZ (1959) Thin-walled elastic bars (in Russian), 2nd edn. Fizmatgiz, MoscowGoogle Scholar
  453. 453.
    von Kármán T (1910) Festigkeitsproblem im Maschinenbau. Encyk D Math Wiss IV:311–385Google Scholar
  454. 454.
    Waisman H, Montoya A, Betti R, Noyan IC (2011) Load transfer and recovery length in parallel wires of suspension bridge cables. J Eng Mech-ASCE 137:227–237Google Scholar
  455. 455.
    Walker AC (1969) A method of solution for nonlinear simultaneous algebraic equations. Int J Numer Methods Eng 1:197–180Google Scholar
  456. 456.
    Walker AC (1969) A nonlinear finite ekment analysis of shallow circular arches. Int J Solids Struct 5:97–107Google Scholar
  457. 457.
    Wang CM, Wang CY, Reddy JN (2005) Exact solutions for buckling of structural members. CRC Press, Boca RatonGoogle Scholar
  458. 458.
    Weiyi C (1999) Derivation of the general form of elasticity tensor of the transverse isotropic material by tensor derivate. Appl Math Mech20(3):309–314MathSciNetGoogle Scholar
  459. 459.
    Wen RK, Medallah K (1987) Elastic stability of deck-type arch bridges. J Struct Eng ASCE113(4):757–768Google Scholar
  460. 460.
    Wenbin YuW, Kimb JS, Hodges DH, Chod M (2008) A critical evaluation of two Reissner–Mindlin type models for composite laminated plates. Aerospace Sci Technol12(5):408–417Google Scholar
  461. 461.
    Whitney JM, Pagano NJ (1970) Shear deformation in heterogeneous anisotropic plates. J Appl Mech 37:1031–1036Google Scholar
  462. 462.
    Wilcox B, Dankowicz H (2009) Design of limit-switch sensors based on discontinuity-induced nonlinearities. In: Proceedings of IDETC/CIE 2009, San Diego, CAGoogle Scholar
  463. 463.
    Wilcox B, Dankowicz H, Lacarbonara W (2009) Response of electrostatically actuated flexible MEMS structures to the onset of low-velocity contact. In: Proceedings of IDETC/CIE 2009, San Diego, CAGoogle Scholar
  464. 464.
    Wu Q, Takahashi K, Nakamura S (2003) The effect of cable loosening on seismic response of a prestressed concrete cable-stayed bridge. J Sound Vib 268:71–84Google Scholar
  465. 465.
    Wu W, Takahashi K, Nakamura S (2003) Non-linear vibrations of cables considering loosening. J Sound Vib 261:385–402Google Scholar
  466. 466.
    Wu Q, Takahashi K, Nakamura S (2004) Non-linear response of cables subject to periodic support excitation considering cable loosening. J Sound Vib 271:453–463Google Scholar
  467. 467.
    Wu Q, Takahashi K, Nakamura S (2007) Influence of cable loosening on nonlinear parametric vibrations of inclined cables. Struct Eng Mech 25Google Scholar
  468. 468.
    Yabuno H (1994) Nonlinear stability analysis for summed-type combination resonance under parametrical excitation (application of center manifold theory and Grobner basis with computer algebra). Nippon Kikai Gakkai Ronbunshu C Hen/Trans Jpn Soc Mech Eng C60(572): 1151–1158Google Scholar
  469. 469.
    Yabuno H (1996) Buckling of a beam subjected to electromagnetic force and its stabilization by controlling the perturbation of the bifurcation. Nonlinear Dynam 10(3):271–285Google Scholar
  470. 470.
    Yabuno H, Ide Y, Aoshima N (1998) Nonlinear analysis of a parametrically excited cantilever beam: (Effect of the tip mass on stationary response). JSME International Journal Series C: Dynamics, Control, Robotics, Design and Manufacturing41(3):555–562Google Scholar
  471. 471.
    Yabuno H, Nayfeh AH (2001) Nonlinear normal modes of a parametrically excited cantilever beam. Nonlin Dyn25:65–77MathSciNetGoogle Scholar
  472. 472.
    Yabuno H, Saigusa S, Aoshima N (2001) Stabilization of the parametric resonance of a cantilever beam by bifurcation control with a piezoelectric actuator. Nonlinear Dynam 26(2):143–161Google Scholar
  473. 473.
    Yabuno H, Okhuma M, Lacarbonara W (2003) An experimental investigation of the parametric resonance in a buckled beam, Paper VIB-48615, 19th ASME Biennial Conf. on Mechanical Vibration and NoiseGoogle Scholar
  474. 474.
    Yabuno H, Kanda R, Lacarbonara W, Aoshima N (2004) Nonlinear active cancellation of the parametric resonance in a magnetically levitated body. J Dyn Syst Meas Contr Tran ASME126(3):433–442Google Scholar
  475. 475.
    Yabuno H, Murakami T, Kawazoe J, Aoshima N (2004) Suppression of parametric resonance in cantilever beam with a pendulum (Effect of static friction at the supporting point of the pendulum). J Vib Acoust126(1):149–162Google Scholar
  476. 476.
    Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients, vol 2. Wiley, New YorkGoogle Scholar
  477. 477.
    Yu P, Desai YM, Shah AH, Popplewell N (1992) Three-degree-of-freedom model for galloping. Part I: Formulation. J Eng Mech-ASCE 119:2404–2424Google Scholar
  478. 478.
    Yu P, Desai YM, Popplewell N, Shah AH (1992) Three-degree-of-freedom model for galloping. Part II: Solutions. J Eng Mech-ASCE 119:2426–2446Google Scholar
  479. 479.
    Yu P, Bi Q (1998) Analysis of non-linear dynamics and bifurcations of a double pendulum. J Sound Vib 217:691–736MathSciNetGoogle Scholar
  480. 480.
    Yu W (2005) Mathematical construction of a Reissner–Mindlin plate theory for composite laminates. Int J Solids Struct42:6680–6699Google Scholar
  481. 481.
    Zavodney LD, Nayfeh AH (1989) The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment. Int J Non Lin Mech 24:105–125Google Scholar
  482. 482.
    Zhang X, Sun B, Peng W (2003) Study on flutter characteristics of cable-supported bridges. J Wind Eng Ind Aerodyn 91:841–854Google Scholar
  483. 483.
    Zhang X, Sun B (2004) Parametric study on the aerodynamic stability of a long-span suspension bridge. J Wind Eng Ind Aerodyn 92:431–439Google Scholar
  484. 484.
    Zhang X (2007) Influence of some factors on the aerodynamic behavior of long-span suspension bridges. J Wind Eng Ind Aerodyn 95:149–164Google Scholar
  485. 485.
    Zhen W, Wanji C (2007) Buckling analysis of angle-ply composite and sandwich plates by combination of geometric stiffness matrix. Comput Mech39:839–848Google Scholar
  486. 486.
    Zhen W, Wanji C (2006) Free vibration of laminated composite and sandwich plates using global-local higher-order theory. J Sound Vib 298:333–349Google Scholar
  487. 487.
    Ziegler SW, Cartmell MP (2001) Using motorized tethers for payload orbital transfer. J Spacecraft Rockets38:904–913Google Scholar
  488. 488.
    Zienkiewicz OC, Morgan K (1983) Finite elements and approximations. Wiley-Interscience, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Walter Lacarbonara
    • 1
  1. 1.Sapienza University of RomeRomeItaly

Personalised recommendations