Advertisement

Understanding Alterations During Human Brain Development with Molecular Imaging: Role in Determining Serotonin and GABA Mechanisms in Autism

  • Diane C. Chugani

Abstract

The purpose of this chapter is to present an approach to the understanding of chemical differences in the brains of children with autism and to use to information to design new treatments for autism. The approach is to utilize information about how the processes in the developing brain of an autistic child differs from those in typically developing children discovered through molecular imaging to design new pharmacological treatments to bring brain development in the autistic child back on course.

Keywords

Positron Emission Tomography GABAA Receptor Autistic Child Angelman Syndrome Ocular Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aman MG (2004) Management of hyperactivity and other acting-out problems in patients with autism spectrum disorder. Semin Pediatr Neurol 11:225–228.CrossRefPubMedGoogle Scholar
  2. Bass MP, Menold MM, Wolpert CM, Donelly SL, Ravan SA, Hauser ER, Maddox LO, Vance JM, Abramson RK, Wright HH, Gilbert JR, Cuccaro ML, DeLong GR, Pericak-Vance MA (2000) Genetic studies in autistic disorder and chromosome 15. Neurogenetics 2:219–226.CrossRefPubMedGoogle Scholar
  3. Bennett-Clarke CA, Leslie MJ, Lane RD, Rhoades RW (1994) Effect of serotonin depletion on vibrissae-related patterns in the rat’s somatosensory cortex. J Neurosci 14:7594–7607.PubMedGoogle Scholar
  4. Bennett-Clarke CA, Chiaia NL, Rhoades RW (1996) Thalamocortical afferents in rat transiently express high-affinity serotonin uptake sites. Brain Res 733:301–306.CrossRefPubMedGoogle Scholar
  5. Blue ME, Erzurumlu RS, Jhaveri S (1991) A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb Cortex 1:380–389.CrossRefPubMedGoogle Scholar
  6. Bostic JQ, King BH (2005) Autism spectrum disorders: emerging pharmacotherapy. Expert Opin Emerg Drugs 10:521–536.CrossRefPubMedGoogle Scholar
  7. Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J, Cook EH Jr, Fang Y, Song CY, Vitale R (2002) Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7:311–316.CrossRefPubMedGoogle Scholar
  8. Carlson BX, Elster L, Schousboe A (1998) Pharmacological and functional implications of developmentally-regulated changes in GABA(A) receptor subunit expression in the cerebellum. Eur J Pharmacol 352:1–14.CrossRefPubMedGoogle Scholar
  9. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Müller U, Aguet M, Babinet C, Shih JC, De Maeyer E (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766.CrossRefPubMedGoogle Scholar
  10. Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C, Gaspar P (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16:297–307.CrossRefPubMedGoogle Scholar
  11. Chandana SR, Behen ME, Juhasz C, Muzik O, Rothermel RD, Mangner TJ, Chakraborty PK, Chugani HT, Chugani DC (2005) Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci 23:171–182.CrossRefPubMedGoogle Scholar
  12. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497.CrossRefPubMedGoogle Scholar
  13. Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, da Silva EA, Chugani HT (1997) Altered serotonin synthesis in the dentato-thalamo-cortical pathway in autistic boys. Ann Neurol 42:666–669.CrossRefPubMedGoogle Scholar
  14. Chugani DC, Muzik O, Behen ME, Rothermel RD, Lee J, Chugani HT (1999) Developmental changes in brain serotonin synthesis capacity in autistic and non-autistic children. Ann Neurol 45:287–295.CrossRefPubMedGoogle Scholar
  15. Chugani DC, Muzik O, Juhasz C, Janisse JJ, Ager J, Chugani HT (2001) Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol 49: 618–626.CrossRefPubMedGoogle Scholar
  16. Chugani DC, Pfund Z, Chandana S, Behen ME, Muzik O, Juhasz C, Lee J (2002) GABAA receptors measured with [C-11] flumazenil PET in children with autism, Angelman and Landau-Kleffner syndromes. International Meeting for Autism Research, Orlando, Florida, November 2002.Google Scholar
  17. Cook EH Jr, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 4:928–934.Google Scholar
  18. Cook EH Jr, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ, Lincoln A, Nix K, Haas R, Leventhal BL, Courchesne E (1998) Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet 62:1077–1083.CrossRefPubMedGoogle Scholar
  19. D‘Amato RJ, Blue ME, Largent BL, Lynch DR, Ledbetter DJ, Molliver ME, Snyder SH (1987) Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Natl Acad Sci USA 84:4322–4326.CrossRefPubMedGoogle Scholar
  20. DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW (1998) Mice lacking the β3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 18:8505–8514.PubMedGoogle Scholar
  21. DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187:207–220.CrossRefPubMedGoogle Scholar
  22. Edagawa Y, Saito H, Abe K (1998a) Serotonin inhibits the induction of long-term potentiation in rat primary visual cortex. Prog Neuropsycholopharmacol Biol Psychiatry 22:983–997.CrossRefGoogle Scholar
  23. Edagawa Y, Saito H, Abe K (1998b) 5HT1A receptor-mediated inhibition of long-term potentiation in rat visual cortex. Eur J Pharmacol 349:221–224.CrossRefPubMedGoogle Scholar
  24. Edagawa Y, Saito H, Abe K (1999) Stimulation of the 5HT1A receptor selectively suppresses NMDA receptor-mediated synaptic excitation in the rat visual cortex. Brain Res 827:225–228.CrossRefPubMedGoogle Scholar
  25. Edagawa Y, Saito H, Abe K (2001) Endogenous serotonin contributes to a developmental decrease in long-term potentiation in the rat visual cortex. J Neurosci 21:1532–1537.PubMedGoogle Scholar
  26. Esaki T, Cook M, Shimoji K, Murphy DL, Sokoloff L, Holmes A (2005) Developmental disruption of serotonin transporter function impairs cerebral responses to whisker stimulation in mice. Proc Natl Acad Sci 102:5582–5587.CrossRefPubMedGoogle Scholar
  27. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810.CrossRefPubMedGoogle Scholar
  28. Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39:223–230. Epub 2008 Sep 23.CrossRefPubMedGoogle Scholar
  29. Fitzgerald KK, Sanes DH (1999) Serotonergic modulation of synapses in the developing gerbil lateral superior olive. J Neurophysiol 81:2743–2752.PubMedGoogle Scholar
  30. Galter D, Unsiker K (2000) Sequential activation of the 5HT1A serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol Cell Neurosci 15:446–455.CrossRefPubMedGoogle Scholar
  31. Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012.CrossRefPubMedGoogle Scholar
  32. Goldman-Rakic, P. S. & Brown, R. M. (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev Brain Res 4:339–349.CrossRefGoogle Scholar
  33. Golshani P, Truong H, Jones EG (1997) Developmental expression of GABAA receptor subunit and GAD genes in mouse somatosensory barrel cortex. J Comp Neurol 383:199–219.CrossRefPubMedGoogle Scholar
  34. Goodman C, Shatz C (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72(Suppl 10), 77–98.CrossRefPubMedGoogle Scholar
  35. Guptill JT, Booker AB, Gibbs TT, Kemper TL, Bauman ML, Blatt GJ (2007) [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: a multiple concentration autoradiographic study. J Autism Dev Disord 37:911–920.CrossRefPubMedGoogle Scholar
  36. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508.CrossRefPubMedGoogle Scholar
  37. Holopainen IE, Metsähonkala EL, Kokkonen H, Parkkola RK, Manner TE, Någren K, Korpi ER (2001) Decreased binding of [11C]flumazenil in Angelman syndrome patients with GABAA receptor β3 subunit deletions. Ann Neurol 49:110–113.CrossRefPubMedGoogle Scholar
  38. Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CE, Korpi ER, Mäkelä R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW (1997) Mice devoid of γ-aminobutyrate type A receptor β3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94:4143–4148.CrossRefPubMedGoogle Scholar
  39. Hornung J-P, Fritschy J-M (1996) Developmental profile of GABAA-receptors in the marmoset monkey: Expression of distinct subtypes in pre- and postnatal brain. J Comp Neurol 367:413–430.CrossRefPubMedGoogle Scholar
  40. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755.CrossRefPubMedGoogle Scholar
  41. Huntsman MM, Isackson PJ, Jones EG (1994) Lamina-specific expression and activity-dependent regulation of seven GABAA receptor mRNAs in monkey visual cortex. JNeurosci 14:2236–2259.Google Scholar
  42. Huntsman MM, Woods TM, Jones EG (1995) Laminar patterns of expression of GABAA receptor subunit mRNAs in monkey sensory motor cortex. J Comp Neurol 362:565–582.CrossRefPubMedGoogle Scholar
  43. Huntsman MM, Munoz A, Jones EG (1999) Temporal modulation of GABAA receptor subunit gene expression in developing monkey cerebral cortex. Neuroscience 91:1223–1245.CrossRefPubMedGoogle Scholar
  44. Isaac JTR, Crair MC, Nicoll RA, Malenka RC (1997) Silent synapses during development of thalamocortical inputs. Neuron 18:269–280.CrossRefPubMedGoogle Scholar
  45. Kojic L, Dyck R, Gu Q, Douglas RM, Matsubara J, Cynader MS (2000) Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proc Natl Acad Sci 97:1841–1844.CrossRefPubMedGoogle Scholar
  46. Kultas-Ilinsky K, Leontiev V, Whiting PJ (1998) Expression of 10 GABAA receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca Mulatta studied with in situ hybridization histochemistry. Neuroscience 85:179–204.CrossRefPubMedGoogle Scholar
  47. Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, Mestikawy SE, Seif I, Gaspar P (1996) Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–835.CrossRefPubMedGoogle Scholar
  48. Li P, Zhou M (1998) Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 393:695–698.CrossRefPubMedGoogle Scholar
  49. Lidow MS, Goldman-Rakic PS, Pakic P (1991) Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci USA 88:10218–10221.CrossRefPubMedGoogle Scholar
  50. Martin ER, Menold MM, Wolpert CM, Bass MP, Donelly SL, Ravan SA, Zimmerman A, Gilbert JR, Vance JM, Maddox LO, Wright HH, Abramson RK, DeLong GR, Cuccaro ML, Pericak-Vance MA (2000) Analysis of linkage disequilibrium in γ-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 96:43–48.CrossRefPubMedGoogle Scholar
  51. Menold MM, Shao Y, Wolpert CM, Donnelly SL, Raiford KL, Martin ER, Ravan SA, Abramson RK, Wright HH, Delong GR, Cuccaro ML, Pericak-Vance MA, Gilbert JR (2001) Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J Neurogenet 15:245–259.CrossRefPubMedGoogle Scholar
  52. Nishi M, Whitaker-Azmitia PM, Azmitia EC (1996) Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5-HT 1A agonist, S100b, and corticosteroid receptor agonists. Synapse 23:1–9.CrossRefPubMedGoogle Scholar
  53. Osterheld-Haas MC, Hornung JP (1996) Laminar development of the mouse barrel cortex, effects of neurotoxins against monoamines. Exp Brain Res 110:183–195.CrossRefPubMedGoogle Scholar
  54. Palermo MT, Curatolo P (2004) Pharmacologic treatment of autism. J Child Neurol 19:155–164.PubMedGoogle Scholar
  55. Posey DJ, McDougle CJ (2001) Pharmacotherapeutic management of autism. Expert Opin Pharmacother 2:587–600.CrossRefPubMedGoogle Scholar
  56. Ramoa AS, Paradiso MA, Freeman RD (1988) Blockade of intracortical inhibition in kitten striate cortex: Effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res 73:285–298.CrossRefPubMedGoogle Scholar
  57. Reiter HO, Stryker MP (1988) Neural plasticity without postsynaptic action potentials, less active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc Natl Acad Sci USA 85:3623–3627.CrossRefPubMedGoogle Scholar
  58. Silva AE, Vayego-Lourenco SA, Fett-Conte AC, Goloni-Bertollo EM, Varella-Garcia M (2002) Tetrasomy 15q11–q13 identified by fluorescence in situ hybridization in a patient with autistic disorder. Arq Neuropsiquiatr 60:290–294.PubMedGoogle Scholar
  59. Sinkkonen ST, Homanics GE, Korpi ER (2003) Mouse models of Angelman syndrome, a neurodevelopmental disorder, display different brain regional GABA(A) receptor alterations. Neurosci Lett 340:205–208.CrossRefPubMedGoogle Scholar
  60. Tecott LH, Logue SF, Wehner JM, Kauer JA (1998) Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proc Natl Acad Sci USA 95:15026–15031.CrossRefPubMedGoogle Scholar
  61. Upton AL, Salichon N, Lebrand C, Ravary A, Blakely R, Seif I, Gaspar P (1999) Excess of serotonin (5-HT) alters the segregation of ipsilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: Possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci 19:7007–7024.PubMedGoogle Scholar
  62. Wolf W, Hicks TP, Albus K (1986) The contribution of GABA-mediated inhibitory mechanisms to visual response properties of neurons in the kitten’s striate cortex. J Neurosci 6:2779–2796.PubMedGoogle Scholar
  63. Yan W, Wilson CC, Haring JH (1997) Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Brain Res Dev Brain Res 98:177–184.CrossRefPubMedGoogle Scholar
  64. Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113:559–568.CrossRefPubMedGoogle Scholar
  65. Yip J, Soghomonian JJ, Blatt GJ (2009) Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res 2:50–59.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Clinical Pharmacology and ToxicologyChildren’s Hospital of MichiganDetroitUSA

Personalised recommendations