Oxytocin and Autism

Abstract

Disturbed social interaction is a central feature of autism and the source of many of the everyday impairments of patients, their relatives and their caregivers. Therefore, it made and still makes sense to study the neurobiology of social function. In addition to helping us understand the disorder, this also holds promise for defining targets that could lead to new and more targeted treatments. An excellent candidate for this approach is oxytocin (OT), a hormone that is central to social processes throughout the animal kingdom, especially for attachment other so-called "prosocial behaviors". In this chapter, we first review the evidence for the neurobiological function of OT in humans, which is now coming together. Then, we review emerging evidence that OT and the neural and hormonal systems to which it is linked are abnormal in autism. Finally, we discuss attempts to use OT to treat autism.

Keywords

Placebo Attenuation Cortisol Stratification Vasopressin 

References

  1. Adolphs R (2003) Investigating the cognitive neusroscience of social behavior. Neuropsychologia 41:119–126.CrossRefPubMedGoogle Scholar
  2. Adolphs R, Sears L, Piven J (2001) Abnormal processing of social information from faces in autism. J Cogn Neurosci 13:232–240.CrossRefPubMedGoogle Scholar
  3. Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68–72.CrossRefPubMedGoogle Scholar
  4. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145.CrossRefPubMedGoogle Scholar
  5. Appenrodt E, Schnabel R, Schwarzberg H (1998) Vasopressin administration modulates anxiety-related behavior in rats. Physiol Behav 64:543–547.CrossRefPubMedGoogle Scholar
  6. Aylward EH, Minshew NJ, Goldstein G, Honeycutt NA, Augustine AM, Yates KO, Barta PE, Pearlson GD (1999) MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53:2145–2150.PubMedGoogle Scholar
  7. Bakermans-Kranenburg MJ, van Ijzendoorn MH (2008) Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neurosci 3:128–134.CrossRefPubMedGoogle Scholar
  8. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC (2000) The amygdala theory of autism. Neurosci Biobehav Rev 24:355–364.CrossRefPubMedGoogle Scholar
  9. Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A, Williams SC (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11:1891–1898.CrossRefPubMedGoogle Scholar
  10. Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E (2008) Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 58:639–650.CrossRefPubMedGoogle Scholar
  11. Bielsky IF, Hu SB, Szegda KL, Westphal H, Young LJ (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29:483–493.CrossRefPubMedGoogle Scholar
  12. Bittel DC, Kibiryeva N, Dasouki M, Knoll JH, Butler MG (2006) A 9-year-old male with a duplication of chromosome 3p25.3p26.2: clinical report and gene expression analysis. Am J Med Genet A 140:573–579.PubMedGoogle Scholar
  13. Blaicher W, Gruber D, Bieglmayer C, Blaicher AM, Knogler W, Huber JC (1999) The role of oxytocin in relation to female sexual arousal. Gynecologic and Obstetric Investigation 47:125–126.CrossRefPubMedGoogle Scholar
  14. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516.CrossRefPubMedGoogle Scholar
  15. Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25:6807–6815.CrossRefPubMedGoogle Scholar
  16. Buijs RM, de Vries GJ, van Leeuwen FW (1985) The distribution and synaptic release of oxytocin in the central nervous system. In: Oxytocin. Clinical and laboratory studies (Amico JA, Robinson AG, eds), pp. 77–86. Amsterdam: Elsevier.Google Scholar
  17. Carmichael MS, Warburton VL, Dixen J, Davidson JM (1994) Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Archives of Sexual Behavior 23:59–79.CrossRefPubMedGoogle Scholar
  18. Carter CS (2007) Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders? Behav Brain Res 176:170–186.CrossRefPubMedGoogle Scholar
  19. Critchley HD, Daly EM, Bullmore ET, Williams SC, Van Amelsvoort T, Robertson DM, Rowe A, Phillips M, McAlonan G, Howlin P, Murphy DG (2000) The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 123(Pt 11):2203–2212.CrossRefPubMedGoogle Scholar
  20. Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH, Alexander AL, Davidson RJ (2005) Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci 8:519–526.PubMedGoogle Scholar
  21. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34.CrossRefPubMedGoogle Scholar
  22. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC (2007a) Oxytocin improves "mind-reading" in humans. Biol Psychiatry 61:731–733.CrossRefPubMedGoogle Scholar
  23. Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC (2007b) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190.CrossRefPubMedGoogle Scholar
  24. Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21:8278–8285.PubMedGoogle Scholar
  25. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiological Reviews 81:629–683.PubMedGoogle Scholar
  26. Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50:609–613.CrossRefPubMedGoogle Scholar
  27. Hammock EA, Young LJ (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308:1630–1634.CrossRefPubMedGoogle Scholar
  28. Hammock EA, Young LJ (2006) Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci 361:2187–2198.CrossRefPubMedGoogle Scholar
  29. Hariri AR, Tessitore A, Mattay VS, Fera F, Weinberger DR (2002) The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage 17:317–323.CrossRefPubMedGoogle Scholar
  30. Hariri AR, Mattay VS, Tessitore A, Fera F, Weinberger DR (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53:494–501.CrossRefPubMedGoogle Scholar
  31. Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry 54:1389–1398.CrossRefPubMedGoogle Scholar
  32. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, Mosovich S (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacol 28:193–198.CrossRefGoogle Scholar
  33. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, Anagnostou E, Wasserman S (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61:498–503.CrossRefPubMedGoogle Scholar
  34. Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248.CrossRefPubMedGoogle Scholar
  35. Ibragimov R (1990) Influence of neurohypophyseal peptides on the formation of active avoidance conditioned reflex behavior. Neurosci Behav Physiol 20:189–193.CrossRefPubMedGoogle Scholar
  36. Insel TR, Young LJ (2001) The neurobiology of attachment. Nat Rev Neurosci 2:129–136.CrossRefPubMedGoogle Scholar
  37. Insel TR, Fernald RD (2004) How the brain processes social information: searching for the social brain. Annu Rev Neurosci 27:697–722.CrossRefPubMedGoogle Scholar
  38. Insel TR, O’Brien DJ, Leckman JF (1999) Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 45:145–157.CrossRefPubMedGoogle Scholar
  39. Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook EH, Jr. (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 417:6–9.CrossRefPubMedGoogle Scholar
  40. Juranek J, Filipek PA, Berenji GR, Modahl C, Osann K, Spence MA (2006) Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children. J Child Neurol 21:1051–1058.CrossRefPubMedGoogle Scholar
  41. Kim SJ, Young LJ, Gonen D, Veenstra-VanderWeele J, Courchesne R, Courchesne E, Lord C, Leventhal BL, Cook EH, Jr., Insel TR (2002) Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol Psychiatry 7:503–507.CrossRefPubMedGoogle Scholar
  42. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493.CrossRefPubMedGoogle Scholar
  43. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676.CrossRefPubMedGoogle Scholar
  44. Lang PJ, Bradley MM, Cuthbert BN (1997) International Affective Picture System (IAPS): Technical Manual and Affective Ratings Gainesville, FL: National Institute of Mental Health Center for the Study of Emotion and Attention.Google Scholar
  45. Lerer E, Levi S, Salomon S, Darvasi A, Yirmiya N, Ebstein RP (2007) Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry.Google Scholar
  46. Liebsch G, Wotjak CT, Landgraf R, Engelmann M (1996) Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci Lett 217:101–104.CrossRefPubMedGoogle Scholar
  47. Loup F, Tribollet E, Dubois-Dauphin M, Dreifuss JJ (1991) Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res 555:220–232.CrossRefPubMedGoogle Scholar
  48. McCarthy MM, McDonald CH, Brooks PJ, Goldman D (1996) An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol Behav 60:1209–1215.CrossRefPubMedGoogle Scholar
  49. McCauley JL, Li C, Jiang L, Olson LM, Crockett G, Gainer K, Folstein SE, Haines JL, Sutcliffe JS (2005) Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet 6:1.CrossRefPubMedGoogle Scholar
  50. McNeilly AS, Robinson IC, Houston MJ, Howie PW (1983) Release of oxytocin and prolactin in response to suckling. Br Med J (Clin Res Ed) 286:257–259.CrossRefGoogle Scholar
  51. Meyer-Lindenberg A, Hariri AR, Munoz KE, Mervis CB, Mattay VS, Morris CA, Berman KF (2005) Neural correlates of genetically abnormal social cognition in Williams syndrome. Nat Neurosci 8:991–993.CrossRefPubMedGoogle Scholar
  52. Meyer-Lindenberg A, Kolachana B, Gold B, Olsh A, Nicodemus KK, Mattay V, Dean M, Weinberger DR (2008) Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol Psychiatry.Google Scholar
  53. Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, Levin H (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43:270–277.CrossRefPubMedGoogle Scholar
  54. Munson J, Dawson G, Abbott R, Faja S, Webb SJ, Friedman SD, Shaw D, Artru A, Dager SR (2006) Amygdalar volume and behavioral development in autism. Arch Gen Psychiatry 63:686–693.CrossRefPubMedGoogle Scholar
  55. Nacewicz BM, Dalton KM, Johnstone T, Long MT, McAuliff EM, Oakes TR, Alexander AL, Davidson RJ (2006) Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Arch Gen Psychiatry 63:1417–1428.CrossRefPubMedGoogle Scholar
  56. Panksepp J (1993) Commentary on the possible role of oxytocin in autism. J Autism Dev Disord 23:567–569.CrossRefPubMedGoogle Scholar
  57. Pedersen CA, Prange AJ, Jr. (1979) Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc Natl Acad Sc USA 76:6661–6665.CrossRefGoogle Scholar
  58. Petrovic P, Kalisch R, Singer T, Dolan RJ (2008) Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci 28:6607–6615.CrossRefPubMedGoogle Scholar
  59. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828–834.CrossRefPubMedGoogle Scholar
  60. Prather MD, Lavenex P, Mauldin-Jourdain ML, Mason WA, Capitanio JP, Mendoza SP, Amaral DG (2001) Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience 106:653–658.CrossRefPubMedGoogle Scholar
  61. Prichard ZM, Mackinnon AJ, Jorm AF, Easteal S (2007) AVPR1A and OXTR polymorphisms are associated with sexual and reproductive behavioral phenotypes in humans. Mutation in brief no. 981. Online. Hum Mutat 28:1150.CrossRefPubMedGoogle Scholar
  62. Rapin I, Katzman R (1998) Neurobiology of autism. Ann Neurol 43:7–14.CrossRefPubMedGoogle Scholar
  63. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401.CrossRefPubMedGoogle Scholar
  64. Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:184–192.PubMedGoogle Scholar
  65. Stoehr JD, Cramer CP, North WG (1992) Oxytocin and vasopressin hexapeptide fragments have opposing influences on conditioned freezing behavior. Psychoneuroendocrinology 17:267–271.CrossRefPubMedGoogle Scholar
  66. Stone VE, Baron-Cohen S, Calder A, Keane J, Young A (2003) Acquired theory of mind impairments in individuals with bilateral amygdala lesions. Neuropsychologia 41:209–220.CrossRefPubMedGoogle Scholar
  67. Wang AT, Dapretto M, Hariri AR, Sigman M, Bookheimer SY (2004) Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 43:481–490.CrossRefPubMedGoogle Scholar
  68. Wassink TH, Piven J, Vieland VJ, Pietila J, Goedken RJ, Folstein SE, Sheffield VC (2004) Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 9:968–972.CrossRefPubMedGoogle Scholar
  69. Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138: 2829–2834.CrossRefPubMedGoogle Scholar
  70. Winslow JT, Insel TR (2004) Neuroendocrine basis of social recognition. Curr Opin Neurobiol 14:248–253.CrossRefPubMedGoogle Scholar
  71. Winston JS, Strange BA, O‘Doherty J, Dolan RJ (2002) Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat Neurosci 5:277–283.CrossRefPubMedGoogle Scholar
  72. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M, Gong X, Zhang Y, Yang X, Zhang D (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 58:74–77.CrossRefPubMedGoogle Scholar
  73. Yirmiya N, Rosenberg C, Levi S, Salomon S, Shulman C, Nemanov L, Dina C, Ebstein RP (2006) Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol Psychiatry 11:488–494.CrossRefPubMedGoogle Scholar
  74. Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR, Leckman JF, Grigorenko EL (2008) Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry 63:911–916.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Central Institute of Mental HealthMannheimGermany

Personalised recommendations