Advertisement

Tularemia and Bioterrorism

  • Lisa Hodges
  • Robert L. Penn
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

Francisella tularensis is a Gram-negative, facultative aerobic coccobacillus and the etiologic agent of tularemia. Historically, it has been referred to as “rabbit fever,” “deer-fly fever,” and “market men's disease” (Penn, 2005). Tularemia in the United States is a seldom-diagnosed zoonosis that causes disease mostly in animals, occasionally infecting people who come into contact with the organism through a natural reservoir, a sick or dead animal, or are bitten by an arthropod vector. Previously occurring as sporadic epidemics, its incidence has decreased substantially since the 1950s (Penn, 2005). Although F. tularensis is one of the most infectious pathogens known, natural human cases of tularemia are uncommon and do not appear to confer a selective advantage in the larger context of the pathogen's evolutionary history.

Keywords

Mass Casualty Francisella Tularensis Live Vaccine Strain Aerosol Challenge Pneumonic Plague 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abd, H., Johansson, T., Golovliov, I., Sandstrom, G., and Forsman, M. (2003). Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 69:600–606.PubMedCrossRefGoogle Scholar
  2. Avery, F.W., and Barnett, T.B. (1967). Pulmonary tularemia. A report of five cases and consideration of pathogenesis and terminology. Am. Rev. Respir. Dis. 95:584–591.PubMedGoogle Scholar
  3. Baker, C.N., Hollis, D.G., and Thornsberry, C. (1985). Antimicrobial susceptibility testing of Fran-cisella tularensis with a modified Mueller-Hinton broth. J. Clin. Microbiol. 22:212–215.PubMedGoogle Scholar
  4. Bernard, K., Tessier, S., Winstanley, J., Chang, D., and Borczyk, A. (1994). Early recognition of atypical Francisella tularensis strains lacking a cysteine requirement. J. Clin. Microbiol. 32:551–553.PubMedGoogle Scholar
  5. Boudreau, R.P., and Dennis, J.M. (1957). Pleuropulmonary tularemia: its roentgen manifestations. Radiology 68:25–30.PubMedGoogle Scholar
  6. Broekhuijsen, M., Larsson, P., Johansson, A., Bystrom, M., Eriksson, U., Larsson, E., Prior, R.G., Sjostedt, A., Titball, R.W., and Forsman, M. (2003). Genome-wide DNA microarray analysis of Francisella tularensisstrains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin. Microbiol. 41:2924–2931.CrossRefGoogle Scholar
  7. Buchanan, T.M., Brooks, G.F., and Brachman, P.S. (1971). The tularemia skin test. 325 skin tests in 210 persons: serologic correlation and review of the literature. Ann. Intern. Med. 74:336–343.PubMedGoogle Scholar
  8. Burke, D.S. (1977). Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J. Infect. Dis. 135:55–60.PubMedCrossRefGoogle Scholar
  9. Centers for Disease Control. (2000). Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR Recomm. Rep. 49:1–14.Google Scholar
  10. Centers for Disease Control. (2001). Laboratory Response Network (LRN): Level A laboratory procedures for identification of Francisella tularensis. Accessed June 1, 2003, Atlanta, (updated December 13, 2001): www.bt.cdc.gov/Agent/Tularemia/ftu_la_cp_121301.pdf.
  11. Centers for Disease Control. (2002a). Outbreak of tularemia among commercially distributed prairie dogs, 2002. MMWR Morb. Mortal. Wkly. Rep. 51:688–699.Google Scholar
  12. Centers for Disease Control. (2002b). Tularemia—United States, 1990–2000. MMWR Morb. Mortal. Wkly. Rep. 51:181–184.Google Scholar
  13. Chang, M.H., Glynn, M.K., and Groseclose, S.L. (2003). Endemic, notifiable bioterrorism-related diseases, United States, 1992–1999. Emerg. Infect. Dis. 9:556–564.PubMedCrossRefGoogle Scholar
  14. Chen, W., Shen, H., Webb, A., KuoLee, R., and Conlan, J.W. (2003). Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine 21:3690–3700.PubMedCrossRefGoogle Scholar
  15. Chocarro, A., Gonzalez, A., and Garcia, I. (2000). Treatment of tularemia with ciprofloxacin. Clin. Infect. Dis. 31:623.PubMedCrossRefGoogle Scholar
  16. Christopher, G.W., Cieslak, T.J., Pavlin, J.A., and Eitzen, E.M., Jr. (1997). Biological warfare. A historical perspective. J.A.M.A. 278:412–417.PubMedCrossRefGoogle Scholar
  17. Chu, M.C., and Weyant, R.S. (2003). Francisella and Brucella. In: Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A., and Yolken, R.H. (eds.), Manual of Clinical Microbiology, vol. 1, 8th ed. ASM Press, Washington, D.C., pp. 789–808.Google Scholar
  18. Conlan, J.W., Chen, W., Shen, H., Webb, A., and KuoLee, R. (2003). Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb. Pathog. 34:239–248.PubMedCrossRefGoogle Scholar
  19. Conlan, J.W., KuoLee, R., Shen, H., and Webb, A. (2002a). Different host defences are required to protect mice from primary systemic vs pulmonary infection with the facultative intracellular bacterial pathogen, Francisella tularensis LVS. Microb. Pathog. 32:127–134.PubMedCrossRefGoogle Scholar
  20. Conlan, J.W., Shen, H., Webb, A., and Perry, M.B. (2002b). Mice vaccinated with the O-antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine 20:3465–3471.PubMedCrossRefGoogle Scholar
  21. Conley, J., Yang, H., Wilson, T., Blasetti, K., Di Ninno, V., Schnell, G., and Wong, J.P. (1997). Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice. Antimicrob. Agents Chemother. 41:1288–1292.PubMedGoogle Scholar
  22. Cowley, S.C., and Elkins, K.L. (2003). Multiple T cell subsets control Francisella tularensis LV S intracellular growth without stimulation through macrophage interferon gamma receptors. J. Exp. Med. 198:379–389.PubMedCrossRefGoogle Scholar
  23. Cowley, S.C., Myltseva, S.V., and Nano, F.E. (1996). Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20:867–874.PubMedCrossRefGoogle Scholar
  24. Cross, J.T., Jr., Schutze, G.E., and Jacobs, R.F. (1995). Treatment of tularemia with gentamicin in pediatric patients. Pediatr. Infect. Dis. J. 14:151–152.PubMedCrossRefGoogle Scholar
  25. Culkin, S.J., Rhinehart-Jones, T., and Elkins, K.L. (1997). A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 158:3277–3284.PubMedGoogle Scholar
  26. Cunha, B.A. (2002). Anthrax, tularemia, plague, ebola or smallpox as agents of bioterrorism: recognition in the emergency room. Clin. Microbiol. Infect. 8:489–503.PubMedCrossRefGoogle Scholar
  27. Dahlstrand, S., Ringertz, O., and Zetterberg, B. (1971). Airborne tularemia in Sweden. Scand. J. Infect. Dis. 3:7–16.PubMedGoogle Scholar
  28. Dembek, Z.F., Buckman, R.L., Fowler, S.K., and Hadler, J.L. (2003). Missed sentinel case of naturally occurring pneumonic tularemia outbreak: lessons for detection of bioterrorism. J. Am. Board. Fam. Pract. 16:339–342.PubMedCrossRefGoogle Scholar
  29. Dennis, D.T., Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Fine, A.D., Friedlander, A.M., Hauer, J., Layton, M., Lillibridge, S.R., McDade, J.E., Osterholm, M.T., O'Toole, T., Parker, G., Perl, T.M., Russell, P.K., and Tonat, K. (2001). Tularemia as a biological weapon: medical and public health management. JAMA. 285:2763–2773.PubMedCrossRefGoogle Scholar
  30. Dienst, F.T., Jr. (1963). Tularemia: a perusal of three hundred thirty-nine cases. J. Louisiana State Med. Soc. 115:114–124.Google Scholar
  31. Dolan, S.A., Dommaraju, C.B., and DeGuzman, G.B. (1998). Detection of Francisella tularensis in clinical specimens by use of polymerase chain reaction. Clin. Infect. Dis. 26:764–765.PubMedCrossRefGoogle Scholar
  32. Drabick, J.J., Narayanan, R.B., Williams, J.C., Leduc, J.W., and Nacy, C.A. (1994). Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine. Am. J. Med. Sci. 308:83–87.PubMedCrossRefGoogle Scholar
  33. Dreisbach, V.C., Cowley, S., and Elkins, K.L. (2000). Purified lipopolysaccharide from Francisella tularensis live vaccine strain (LVS) induces protective immunity against LVS infection that requires B cells and gamma interferon. Infect. Immun. 68:1988–1996.PubMedCrossRefGoogle Scholar
  34. Eigelsbach, H.T., and Downs, CM. (1961). Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig. J. Immunol. 87:415–425.PubMedGoogle Scholar
  35. Eigelsbach, H.T., Hornick, R.B., and Tulis, J.J. (1967). Recent studies on live tularemia vaccine. Med. Ann. Dist. Columbia 36:282–286.PubMedGoogle Scholar
  36. Eigelsbach, H.T., and McGann, V.G. (1984). Genus Francisella Doroféev 1947, 176AL. In: Krieg, N.R., and Holt, J.G. (eds.), Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, pp. 394–399.Google Scholar
  37. Elkins, K.L., Bosio, CM., and Rhinehart-Jones, T.R. (1999). Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect. Immun. 67:6002–6007.PubMedGoogle Scholar
  38. Elkins, K.L., Cooper, A., Colombini, S.M., Cowley, S.C, and Kieffer, T.L. (2002). In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Infect. Immun. 70:1936–1948.PubMedCrossRefGoogle Scholar
  39. Ellis, J., Oyston, PC, Green, M., and Titball, R.W. (2002). Tularemia. Clin. Microbiol. Rev. 15: 631–646.PubMedCrossRefGoogle Scholar
  40. Enderlin, G., Morales, L., Jacobs, R.F., and Cross, J.T. (1994). Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin. Infect. Dis. 19:42–47.PubMedCrossRefGoogle Scholar
  41. Ericsson, M., Kroca, M., Johansson, T., Sjostedt, A., and Tarnvik, A. (2001). Long-lasting recall response of CD4 + and CD8 + alphabeta T cells, but not gammadelta T cells, to heat shock proteins of Francisella tularensis. Scand. J. Infect. Dis. 33:145–152.PubMedCrossRefGoogle Scholar
  42. Evans, M.E., Gregory, D.W., Schaffner, W., and McGee, Z.A. (1985). Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore) 64:251–269.Google Scholar
  43. Feldman, K.A., Enscore, R.E., Lathrop, S.L., Matyas, B.T., McGuill, M., Schriefer, M.E., Stiles-Enos, D., Dennis, D.T., Petersen, L.R., and Hayes, E.B. (2001). An outbreak of primary pneumonic tularemia on Martha's Vineyard. N. Engl. J. Med. 345:1601–1606.PubMedCrossRefGoogle Scholar
  44. Feldman, K.A., Stiles-Enos, D., Julian, K., Matyas, B.T., Telford, S.R., 3rd, Chu, M.C., Petersen, L.R., and Hayes, E.B. (2003). Tularemia on Martha's Vineyard: seroprevalence and occupational risk. Emerg. Infect. Dis. 9:350–354.PubMedCrossRefGoogle Scholar
  45. Fortier, A.H., Leiby, D.A., Narayanan, R.B., Asafoadjei, E., Crawford, R.M., Nacy, C.A., and Meltzer, M.S. (1995). Growth of Francisella tularensis LVS in macrophages: the acidic intracellu-lar compartment provides essential iron required for growth. Infect. Immun. 63:1478–1483.PubMedGoogle Scholar
  46. Foshay, L. (1932). Tularemia. Accurate and earlier diagnosis by means of the intradermal reaction. J. Infect. Dis. 51:286–291.CrossRefGoogle Scholar
  47. Foshay, L. (1940). Tularemia: a summary of certain aspects of the disease including methods for early diagnosis and the results of serum treatment in 600 patients. Medicine (Baltimore) 19:1–83.Google Scholar
  48. Franz, D.R., Jahrling, P.B., Friedlander, A.M., McClain, D.J., Hoover, D.L., Bryne, W.R., Pavlin, J.A., Christopher, G.W., and Eitzen, E.M., Jr. (1997). Clinical recognition and management of patients exposed to biological warfare agents. J.A.M.A. 278:399–411.PubMedCrossRefGoogle Scholar
  49. Giddens, W.R., Wilson, J.W., Dienst, F.T., Jr., and Hargrove, M.D. (1957). Tularemia: an analysis of one hundred forty-seven cases. J. Louisiana State Med. Soc. 109:93–98.Google Scholar
  50. Golovliov, I., Sjostedt, A., Mokrievich, A., and Pavlov, V. (2003). A method for allelic replacement in Francisella tularensis. FEMS Microbiol. Lett. 222:273–280.PubMedCrossRefGoogle Scholar
  51. Green, S.J., Nacy, C.A., Schreiber, R.D., Granger, D.L., Crawford, R.M., Meltzer, M.S., and Fortier, A.H. (1993). Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice. Infect. Immun. 61:689–698.PubMedGoogle Scholar
  52. Grunow, R., and Finke, E.J. (2002). A procedure for differentiating between the intentional release of biological warfare agents and natural outbreaks of disease: its use in analyzing the tularemia outbreak in Kosovo in 1999 and 2000. Clin. Microbiol. Infect. 8:510–521.PubMedCrossRefGoogle Scholar
  53. Grunow, R., Splettstoesser, W., McDonald, S., Otterbein, C., O'Brien, T., Morgan, C., Aldrich, J., Hofer, E., Finke, E.J., and Meyer, H. (2000). Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin. Diagn. Lab. Immunol. 7:86–90.PubMedGoogle Scholar
  54. Gundry, L.P., and Warner, C.G. (1933). Fatal tularemia: review of autopsied cases with report of a fatal case. Ann. Intern. Med. 7:837–852.Google Scholar
  55. Harris, C.E. (1926). Tularemia. Colo. Med. 23:328–334.Google Scholar
  56. Harris, S. (1992). Japanese biological warfare research on humans: a case study of microbiology and ethics. Ann. N. Y. Acad. Sci. 666:21–52.PubMedCrossRefGoogle Scholar
  57. Hernychova, L., Kovarova, H., Macela, A., Kroca, M., Krocova, Z., and Stulik, J. (1997). Early consequences of macrophage—Francisella tularensis interaction under the influence of different genetic background in mice. Immunol. Lett. 57:75–81.PubMedCrossRefGoogle Scholar
  58. Hopla, C.E. (1974). The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 18:25–53.PubMedGoogle Scholar
  59. Hornick, R. (2001). Tularemia revisited. N. Engl. J. Med. 345:1637–1639.PubMedCrossRefGoogle Scholar
  60. Hornick, R.B., and Eigelsbach, H.T. (1966). Aerogenic immunization of man with live tularemia vaccine. Bacteriol. Rev. 30:532–538.PubMedGoogle Scholar
  61. Hutwagner, L.C., Thompson, W., Groseclose, S.L., and Willamson, G.D. (2000). An evaluation of alternative methods for detection of aberrations in public health surveillance data. Proceedings of the Biometrics Sections, American Statistical Association, Baltimore, pp. 82–85.Google Scholar
  62. Ikaheimo, I., Syrjala, H., Karhukorpi, J., Schildt, R., and Koskela, M. (2000). In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 46:287–290.PubMedCrossRefGoogle Scholar
  63. Jacobs, R.F., Condrey, Y.M., and Yamauchi, T. (1985). Tularemia in adults and children: a changing presentation. Pediatrics 76:818–822.PubMedGoogle Scholar
  64. Johansson, A., Berglund, L., Eriksson, U., Goransson, I., Wollin, R., Forsman, M., Tarnvik, A., and Sjostedt, A. (2000a). Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J. Clin. Microbiol. 38:22–26.PubMedGoogle Scholar
  65. Johansson, A., Berglund, L., Gothefors, L., Sjostedt, A., and Tarnvik, A. (2000b). Ciprofloxacin for treatment of tularemia in children. Pediatr. Infect. Dis. J. 19:449–453.PubMedCrossRefGoogle Scholar
  66. Johansson, A., Urich, S.K., Chu, M.C., Sjostedt, A., and Tarnvik, A. (2002). In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand. J. Infect. Dis. 34:327–330.PubMedCrossRefGoogle Scholar
  67. Kaufmann, A.F., Meltzer, M.I., and Schmid, G.P. (1997). The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg. Infect. Dis. 3:83–94.PubMedCrossRefGoogle Scholar
  68. Ketai, L., Alrahji, A.A., Hart, B., Enria, D., and Mettler, F., Jr. (2003). Radiologic manifestations of potential bioterrorist agents of infection. AJR Am. J. Roentgenol. 180:565–575.PubMedGoogle Scholar
  69. Koskela, P., and Herva, E. (1980). Cell-mediated immunity against Francisella tularensis after natural infection. Scand. J. Infect. Dis. 12:281–287.PubMedGoogle Scholar
  70. Koskela, P., and Herva, E. (1982). Cell-mediated and humoral immunity induced by a live Francisella tularensis vaccine. Infect. Immun. 36:983–989.PubMedGoogle Scholar
  71. Kovarova, H., Hernychova, L., Hajduch, M., Sirova, M., and Macela, A. (2000). Influence of the bcg locus on natural resistance to primary infection with the facultative intracellular bacterium Francisella tularensis in mice. Infect. Immun. 68:1480–1484.PubMedCrossRefGoogle Scholar
  72. Lai, X.H., Golovliov, I., and Sjostedt, A. (2001). Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun. 69:4691–4694.PubMedCrossRefGoogle Scholar
  73. Larson, C.L. (1970). Tularemia. In: Tice, F., and Sanford, J.P (eds.), Tice's Practice of Medicine, vol. 3. Harper & Row Publishers, Inc., Hagerstown, MD, pp. 663–676.Google Scholar
  74. Mason, W.L., Eigelsbach, H.T., Little, S.F., and Bates, J.H. (1980). Treatment of tularemia, including pulmonary tularemia, with gentamicin. Am. Rev. Respir. Dis. 121:39–45.PubMedGoogle Scholar
  75. Maurin, M., Mersali, N.F., and Raoult, D. (2000). Bactericidal activities of antibiotics against intracellular Francisella tularensis. Antimicrob. Agents Chemother. 44:3428–3431.PubMedCrossRefGoogle Scholar
  76. McCrumb, F.RJ. (1961). Aerosol infection of man with Pasteurella tularensis. Bacteriol. Rev. 25: 262–267.PubMedGoogle Scholar
  77. Miller, R.P, and Bates, J.H. (1969). Pleuropulmonary tularemia. A review of 29 patients. Am. Rev. Respir. Dis. 99:31–41.PubMedGoogle Scholar
  78. Narayanan, R.B., Drabick, J.J., Williams, J.C., Fortier, A.H., Meltzer, M.S., Sadoff, J.C., Bolt, C.R., and Nacy, C.A. (1993). Immunotherapy of tularemia: characterization of a monoclonal antibody reactive with Francisella tularensis. J. Leukoc. Biol. 53:112–116.PubMedGoogle Scholar
  79. Overholt, E.L., Tigertt, W.D., Kadull, P.J., Ward, M.K., Charkes, N.D., Rene, R.M., Salzman, T.E., and Stephens, M. (1961). An analysis of forty-two cases of laboratory-acquired tularemia. Treatment with broad spectrum antibiotics. Am. J. Med. 30:785–806.PubMedCrossRefGoogle Scholar
  80. Patt, H.A., and Feigin, R.D. (2002). Diagnosis and management of suspected cases of bioterrorism: a pediatric perspective. Pediatrics 109:685–692.PubMedCrossRefGoogle Scholar
  81. Penn, R.L. (2005). Francisella tularensis (tularemia). In: Mandell, G., Bennett, J., and Dolan, R. (eds.), Mandell, Douglas, and Bennett's Principles and Practice of Infectious Dieseases, 6th ed. Elsevier Churchill Livingston, Philadelphia, pp. 2674–2685.Google Scholar
  82. Penn, R.L., and Kinasewitz, G.T. (1987). Factors associated with a poor outcome in tularemia. Arch. Intern. Med. 147:265–268.PubMedCrossRefGoogle Scholar
  83. Perez-Castrillon, J.L., Bachiller-Luque, P., Martin-Luquero, M., Mena-Martin, F.J., and Herreros, V. (2001). Tularemia epidemic in northwestern Spain: clinical description and therapeutic response.Clin. Infect. Dis. 33:573–576.PubMedCrossRefGoogle Scholar
  84. Permar, H.H., and Maclahlan, W.W.G. (1931). Tularemia pneumonia. Ann. Intern. Med. 5:687–698.Google Scholar
  85. Poquet, Y., Kroca, M., Halary, F., Stenmark, S., Peyrat, M.A., Bonneville, M., Fournie, J.J., and Sjostedt, A. (1998). Expansion of Vγ9Vδ2 T cells is triggered by Francisella tularensis-derived phosphoantigens in tularemia but not after tularemia vaccination. Infect. Immun. 66:2107–2114.PubMedGoogle Scholar
  86. Reintjes, R., Dedushaj, I., Gjini, A., Jorgensen, T.R., Cotter, B., Lieftucht, A., D'Ancona, F., Dennis, D.T., Kosoy, M.A., Mulliqi-Osmani, G., Grunow, R., Kalaveshi, A., Gashi, L., and Humolli, I. (2002). Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg. Infect. Dis. 8:69–73.PubMedCrossRefGoogle Scholar
  87. Robinson-Dunn, B. (2002). The microbiology laboratory's role in response to bioterrorism. Arch. Pathol. Lab. Med. 126:291–294.PubMedGoogle Scholar
  88. Rodgers, B.L., Duffield, R.P., Taylor, T., Jacobs, R.F., and Schutze, G.E. (1998). Tularemic meningitis. Pediatr. Infect. Dis. J. 17:439–441.PubMedCrossRefGoogle Scholar
  89. Rubin, S.A. (1978). Radiographic spectrum of pleuropulmonary tularemia. AJR Am. J. Roentgenol. 131:277–281.PubMedGoogle Scholar
  90. Russell, P., Eley, S.M., Fulop, M.J., Bell, D.L., and Titball, R.W. (1998). The efficacy of ciprofloxacin and doxycycline against experimental tularaemia. J. Antimicrob. Chemother. 41:461–465.PubMedCrossRefGoogle Scholar
  91. Sandstrom, G., Lofgren, S., and Tarnvik, A. (1988). A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 56:1194–1202.PubMedGoogle Scholar
  92. Sanford, J.P. (1983). Landmark perspective: tularemia. J.A.M.A. 250:3225–3226.PubMedCrossRefGoogle Scholar
  93. Saslaw, S., Eigelsbach, H.T., Prior, J.A., Wilson, H.E., and Carhart, S. (1961a). Tularemia vaccine study. II. Respiratory challenge. Arch. Intern. Med. 107:702–714.PubMedCrossRefGoogle Scholar
  94. Saslaw, S., Eigelsbach, H.T., Wilson, H.E., Prior, J.A., and Carhart, S. (1961b). Tularemia vaccine study. I. Intracutaneous challenge. Arch. Intern. Med. 107:689–701.PubMedCrossRefGoogle Scholar
  95. Sawyer, W.D., Dangerfield, H.G., Hogge, A.L., and Crozier, D. (1966). Antibiotic prophylaxis and therapy of airborne tularemia. Bacteriol. Rev. 30:542–550.PubMedGoogle Scholar
  96. Scofield, R.H., Lopez, E.J., and McNabb, S.J. (1992). Tularemia pneumonia in Oklahoma, 1982–1987. J. Oklahoma State Med. Assoc. 85:165–170.Google Scholar
  97. Sewell, D.L. (2003). Laboratory safety practices associated with potential agents of biocrime or bioterrorism. J. Clin. Microbiol. 41:2801–2809.PubMedCrossRefGoogle Scholar
  98. Shapiro, D.S., and Mark, E.J. (2000). Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 14-2000. A 60-year-old farm worker with bilateral pneumonia. N. Engl. J. Med. 342:1430–1438.CrossRefGoogle Scholar
  99. Shapiro, D.S., and Schwartz, D.R. (2002). Exposure of laboratory workers to Francisella tularensis despite a bioterrorism procedure. J. Clin. Microbiol. 40:2278–2281.PubMedCrossRefGoogle Scholar
  100. Sjostedt, A., Eriksson, U., Berglund, L., and Tarnvik, A. (1997). Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J. Clin. Microbiol. 35:1045–1048.PubMedGoogle Scholar
  101. Stuart, B.M., and Pullen, R.L. (1945). Tularemia pneumonia. Review of American literature and report of 15 additional cases. Am. J. Med. Sci. 210:223–236.CrossRefGoogle Scholar
  102. Stupak, H.D., Scheuller, M.C., Schindler, D.N., and Ellison, D.E. (2003). Tularemia of the head and neck: a possible sign of bioterrorism. Ear Nose Throat J. 82:263–265.PubMedGoogle Scholar
  103. Syrjala, H., Karvonen, J., and Salminen, A. (1984). Skin manifestations of tularemia: a study of 88 cases in northern Finland during 16 years (1967–1983). Acta Derm. Venereol. 64: 513–516.PubMedGoogle Scholar
  104. Syrjala, H., Kujala, P., Myllyla, V., and Salminen, A. (1985). Airborne transmission of tularemia in farmers. Scand. J. Infect. Dis. 17:371–375.PubMedGoogle Scholar
  105. Syrjala, H., Schildt, R., and Raisainen, S. (1991). In vitro susceptibility of Francisella tularensis to flu-oroquinolones and treatment of tularemia with norfloxacin and ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 10:68–70.PubMedCrossRefGoogle Scholar
  106. Syrjala, H., Sutinen, S., Jokinen, K., Nieminen, P., Tuuponen, T., and Salminen, A. (1986). Bronchial changes in airborne tularemia. J. Laryngol. Otol. 100:1169–1176.PubMedCrossRefGoogle Scholar
  107. Tarnvik, A. (1989). Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis. 11:440–451.PubMedCrossRefGoogle Scholar
  108. Tarnvik, A., and Berglund, L. (2003). Tularaemia. Eur. Respir. J. 21:361–373.PubMedCrossRefGoogle Scholar
  109. Tarnvik, A., and Lofgren, S. (1975). Stimulation of human lymphocytes by a vaccine strain of Francisella tularensis. Infect. Immun. 12:951–957.PubMedGoogle Scholar
  110. Telepnev, M., Golovliov, I., Grundstrom, T., Tarnvik, A., and Sjostedt, A. (2003). Francisella tularensis inhibits toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol. 5:41–51.PubMedCrossRefGoogle Scholar
  111. Teutsch, S.M., Martone, W.J., Brink, E.W., Potter, M.E., Eliot, G., Hoxsie, R., Craven, R.B., and Kaufmann, A.F. (1979). Pneumonic tularemia on Martha's Vineyard. N. Engl. J. Med. 301: 826–828.PubMedCrossRefGoogle Scholar
  112. Tigertt, W.D. (1962). Soviet viable Pasteurella tularensis vaccines. A review of selected articles. Bac-teriol. Rev. 26:354–373.PubMedGoogle Scholar
  113. Waag, D.M., Sandstrom, G., England, M.J., and Williams, J.C. (1996). Immunogenicity of a new lot of Francisella tularensis live vaccine strain in human volunteers. FEMS Immunol. Med. Microbiol. 13:205–209.PubMedCrossRefGoogle Scholar
  114. White, J.D., Rooney, J.R., Prickett, P.A., Derrenbacher, E.B., Beard, C.W., and Griffith, W.R. (1964). Pathogenesis of experimental respiratory tularemia in monkeys. J. Infect. Dis. 114:277–283.PubMedCrossRefGoogle Scholar
  115. World Health Organization. (1970). Health Aspects of Chemical and Biological Weapons: Report of a WHO Group of Consultants, World Health Organization, Geneva.Google Scholar
  116. Zaidi, S.A., and Singer, C. (2002). Gastrointestinal and hepatic manifestations of tickborne diseases in the United States. Clin. Infect. Dis. 34:1206–1212.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lisa Hodges
    • 1
  • Robert L. Penn
    • 2
  1. 1.Infectious Diseases Section, Department of MedicineLouisiana State University Health Sciences CenterShreveport
  2. 2.Department of MedicineLouisiana State University Health Sciences CenterShreveport

Personalised recommendations