Systems Biology and Modeling of Circadian Rhythms

  • Thomas d’Eysmond
  • Felix Naef
Part of the Protein Reviews book series (PRON, volume 12)


Circadian rhythms have fascinated modelers for more than half a century. In this chapter, we review some of the main concepts that shape theoretical chronobiology, such as phase oscillators and phase response curves. We then proceed to the contemporary developments of detailed kinetic models that exploit recent findings about molecular mechanisms in mammals. Predictions from these models can be assessed quantitatively and compared with recent data, with encouraging agreement.


Circadian clocks Models Systems biology 


  1. 1.
    Winfree AT (2001) The geometry of biological time. SpringerGoogle Scholar
  2. 2.
    Forger DB, Dean DA II, Gurdziel K, Leloup JC, Lee C, Von Gall C, Etchegaray JP, Kronauer RE, Goldbeter A, Peskin CS et al (2003) Development and validation of computational models for mammalian circadian oscillators. OMICS 7:387–400CrossRefPubMedGoogle Scholar
  3. 3.
    Roenneberg T, Chua EJ, Bernardo R, Mendoza E (2008) Modelling biological rhythms. Curr Biol 18:R826–R835CrossRefPubMedGoogle Scholar
  4. 4.
    Pulivarthy SR, Tanaka N, Welsh DK, De Haro L, Verma IM, Panda S (2007) Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proc Natl Acad Sci USA 104:20356–20361CrossRefPubMedGoogle Scholar
  5. 5.
    Ukai H, Kobayashi TJ, Nagano M, Masumoto KH, Sujino M, Kondo T, Yagita K, Shigeyoshi Y, Ueda HR (2007) Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks. Nat Cell Biol 9:1327–1334CrossRefPubMedGoogle Scholar
  6. 6.
    Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW (1996) Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271:1736–1740CrossRefPubMedGoogle Scholar
  7. 7.
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705CrossRefPubMedGoogle Scholar
  8. 8.
    Liu C, Reppert SM (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25:123–128CrossRefPubMedGoogle Scholar
  9. 9.
    Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605CrossRefPubMedGoogle Scholar
  10. 10.
    Ohta H, Yamazaki S, McMahon DG (2005) Constant light desynchronizes mammalian clock neurons. Nat Neurosci 8:267–269CrossRefPubMedGoogle Scholar
  11. 11.
    Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412CrossRefPubMedGoogle Scholar
  12. 12.
    Kuramoto Y (1984) Chemical Oscilations, Waves and Turbulence. Springer-Verlag, Berlin 164Google Scholar
  13. 13.
    Rougemont J, Naef F (2006) Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. Phys Rev E 73:1–5CrossRefGoogle Scholar
  14. 14.
    Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85CrossRefPubMedGoogle Scholar
  15. 15.
    Amdaoud M, Vallade M, Weiss-Schaber C, Mihalcescu I (2007) Cyanobacterial clock, a stable phase oscillator with negligible intercellular coupling. Proc Natl Acad Sci USA 104:7051–7056CrossRefPubMedGoogle Scholar
  16. 16.
    Rougemont J, Naef F (2007) Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks. Mol Syst Biol 3:93CrossRefPubMedGoogle Scholar
  17. 17.
    Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227CrossRefPubMedGoogle Scholar
  18. 18.
    Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492CrossRefPubMedGoogle Scholar
  19. 19.
    Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043CrossRefPubMedGoogle Scholar
  20. 20.
    Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptácek LJ, Fu YH (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644CrossRefPubMedGoogle Scholar
  21. 21.
    Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, and Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1, 2005.0013Google Scholar
  22. 22.
    Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A (2009) A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 23:708–718CrossRefPubMedGoogle Scholar
  23. 23.
    Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7:e52CrossRefPubMedGoogle Scholar
  24. 24.
    Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci USA 105:20746–20751CrossRefPubMedGoogle Scholar
  25. 25.
    Dibner C, Sage D, Unser M, Bauer C, d’Eysmond T, Naef F, Schibler U (2009) Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J 28:123–134CrossRefPubMedGoogle Scholar
  26. 26.
    Stelling J, Gilles ED, Doyle FJ (2004) Robustness properties of circadian clock architectures. Proc Natl Acad Sci USA 101:13210–13215CrossRefPubMedGoogle Scholar
  27. 27.
    Bagheri N, Stelling J, Doyle FJ (2007) Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics 23:358–364CrossRefPubMedGoogle Scholar
  28. 28.
    Kurosawa G, Iwasa Y (2005) Temperature compensation in circadian clock models. J Theor Biol 233:453–468CrossRefPubMedGoogle Scholar
  29. 29.
    Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295CrossRefPubMedGoogle Scholar
  30. 30.
    Goldbeter A (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc Biol Sci 261:319–324CrossRefPubMedGoogle Scholar
  31. 31.
    Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438CrossRefPubMedGoogle Scholar
  32. 32.
    Rand DA, Shulgin BV, Salazar D, Millar AJ (2004) Design principles underlying circadian clocks. J R Soc Interface 1:119–130CrossRefPubMedGoogle Scholar
  33. 33.
    Leloup JC, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci USA 100:7051–7056CrossRefPubMedGoogle Scholar
  34. 34.
    Oster H, Yasui A, van der Horst GT, Albrecht U (2002) Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev 16:2633–2638CrossRefPubMedGoogle Scholar
  35. 35.
    Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput Biol 3:e68CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thomas d’Eysmond
  • Felix Naef
    • 1
    • 2
  1. 1.School of life sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland

Personalised recommendations