Advertisement

Fluorescent Labeling and Its Effect on Hybridization of Oligodeoxyribonucleotides

  • Ramendra K. Singh
  • Shipra Agarwal
Part of the Reviews in Fluorescence 2008 book series (RFLU, volume 2008)

Abstract

Biophysical labeling involves selective modification of biological objects with various types of labels capable of providing information on their structure, molecular dynamics, and mechanism of actions. Nowadays, biophysical labeling methods are being used to solve a number of structural problems. These include methods of spin, triplet, photochromic, electron scattering, Mossbauer and NMR, radioactive and fluorescent labeling 1. The most widely used labels in investigations associated with oligonucleotides/nucleic acids are the radioisotopes on account of their high detection sensitivity. However, nowadays, fluorescent labeling is being explored as a strong potential alternative to radioactive labeling for oligonucleotides/nucleic acids.

Keywords

Hexanoic Acid High Detection Sensitivity Pyrimidine Nucleoside Label Oligonucleotide Anhydrous Pyridine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. I. Likhenshtein, Biophysical Labeling Methods in Molecular Biology, Cambridge University Press, Cambridge (1993).CrossRefGoogle Scholar
  2. 2.
    V. Hukkanen, T. Rehn, R. Kajander, and M. Sjoroos, J. Clin. Microbiol. 38, 3214–18 (2000).PubMedGoogle Scholar
  3. 3.
    W. T. Markiewicz, G. Groger, R. Rosch, A. Zebrowska, M. Markiewicz, M. Klotz, M. Hinz, P. Godzina, and H. Seliger, Nucleic Acids Res. 25, 3672–80 (1997).CrossRefPubMedGoogle Scholar
  4. 4.
    D. Proudnikov and A. Mirzabekovl, Nucleic Acids Res. 23, 4535–42 (1995).CrossRefGoogle Scholar
  5. 5.
    T. Horn, C. A. Chang, and M. S. Urdea, Nuleic Acids Res. 25, 4842–49 (1997).CrossRefGoogle Scholar
  6. 6.
    B. A. Connolly, Nucleic Acids Res. 15, 3131–39 (1987).CrossRefPubMedGoogle Scholar
  7. 7.
    D. J. Allen, P. L. Darke, and S. J. Benkovic, Biochemistry 28, 4601–07 (1989).CrossRefPubMedGoogle Scholar
  8. 8.
    J. B. Shear, et al., Proc. Natl. Acad. Sci. 93, 10763–68 (1996).CrossRefPubMedGoogle Scholar
  9. 9.
    T. A. Brown, ed. Essentials in Molecular Biology: A Practical Approach, IRL Press, New York, Vol. 11 (1991).Google Scholar
  10. 10.
    E. S. Masfield, J. M. Worley, S. E. Mckenzie, S. Surrey, E. Rappaport, and P. Fortina, Mol. Cell. Probes. 9, 145–56 (1995).CrossRefGoogle Scholar
  11. 11.
    U. Landegreen, R. Kaiser, C. Caskey, and L. E. Hood, Science 242, 229–37 (1988).CrossRefGoogle Scholar
  12. 12.
    R. Weissleder and R. Ntziachristos, Nat. Med. 9, 123–128 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    L. B. Bloom, M. R. Otto, J. M. Beecham, and M. F. Goodman, Biochemistry 32, 11247–58 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    T. Hiratsuka, Gendai Kagaku 283, 5–20 (1994).Google Scholar
  15. 15.
    A. Bollen, M. J. DeVos, and E. Godfroid, Nucleic Acids Symp. Ser. 34, 235–36 (1995).PubMedGoogle Scholar
  16. 16.
    J. Ju, I. Kheterpal, J. R. Schaerer, C. Ruan, C. W. Fuller, A. N. Glazer, and R. A. Matheis, Anal. Biochem. 231, 131–40 (1995).CrossRefPubMedGoogle Scholar
  17. 17.
    L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Conell, C. Heiner, S. B. H. Kent, and L. E. Hood, Nature 321, 674–79 (1986).CrossRefPubMedGoogle Scholar
  18. 18.
    J. G. Bruno, Biochem. Biophys. Res. Commun. 234, 117–20 (1997).CrossRefPubMedGoogle Scholar
  19. 19.
    H. Sawai, Jpn Kokai Tokyo Koho; JP 07. 165, 786 (95, 165, 786); Chem. Abstr. 124, 117897 (1996).Google Scholar
  20. 20.
    W. A. Rudert, E. R. Braun, S. J. Fass, R. Menon, A. Jaquins-Gersti, and M. Truco, Biotechniques 22, 1140–45 (1997).PubMedGoogle Scholar
  21. 21.
    R. Sjoback, J. Nygron, and M. Kulbista, Biopolymers 46, 445–53 (1998).CrossRefPubMedGoogle Scholar
  22. 22.
    M. Wiester, H. Schmeiser, H. C. Klim, and C. Bidel, Ger Offen De, 19, 032; Chem. Abstr. 128, 578 (1998).Google Scholar
  23. 23.
    B. Shen, H. Zou, J. Chu, Y. Yang, and P. Zou, Yichaun Xuebao 22, 167 (1997).Google Scholar
  24. 24.
    O. Seitz, Tetrahedron Lett. 40, 4161–64 (1999).CrossRefGoogle Scholar
  25. 25.
    T. Maier, W. Pfleiderer, Nucleosides Nucleotides 14, 961–64 (1995).CrossRefGoogle Scholar
  26. 26.
    M. Musiani, M. Zerbini, S. Venturoli, G. Gentilomi, G. Gallinella, E. Manersi, M. LaPlaca, A. D’Antuno, and A. Roda, J. Histochem. Cytochem. 45, 729–31 (1991).Google Scholar
  27. 27.
    M. Musiani, M. Zerbini, D. Gibellini, S. Venturoli, G. Gentilomi, G. Galmella, and M. La Placa, Clin. Chem. Acta 226, 237–45 (1994).CrossRefGoogle Scholar
  28. 28.
    C. Y. Huong, M. Kasai, and D. E. Buetow, Genet. Anal. Biomol. Eng. 14, 109–12 (1998).CrossRefGoogle Scholar
  29. 29.
    X. Li, W. M. James, F. Tragon, and E. Darzynkiewiez, Biotech. Histochem. 70, 234–42 (1995).CrossRefPubMedGoogle Scholar
  30. 30.
    K. Yamana, Y. Ohosi, and H. Nunato, Tetrahedron 53, 4265–70 (1997).CrossRefGoogle Scholar
  31. 31.
    S. G. Erskine and S. E. Halford, Gene 157, 153–56 (1995).CrossRefPubMedGoogle Scholar
  32. 32.
    K. Brickmann, H. Linnertz, E. Almer, E. Lang, P. Herman, and W. Schoner, Eur. J. Biochem. 249, 301–08 (1997).CrossRefGoogle Scholar
  33. 33.
    C. E. Catalano, D. J. Allen, and S. J. Benkovic, Biochemistry 29, 3612–21 (1990).CrossRefPubMedGoogle Scholar
  34. 34.
    F. J. Loge, R. W. Emerick, D. E. Thomson, D. C. Nelson, and J. L. Derby, Water Environ. Res. 9, 75–83 (1999).CrossRefGoogle Scholar
  35. 35.
    W. D. Wilson, F. A. Tanious, H. J. Barton, R. L. Jones, K. Fox, R. L. Wydra, and L. Streckowski, Biochemistry 29, 8452–61 (1990).CrossRefPubMedGoogle Scholar
  36. 36.
    N. L. Barcellona and E. Gratton, Med. Biol. Environ. 21, 573–92 (1993).Google Scholar
  37. 37.
    J. C. Stockert, C. I. Trigosa, T. Cuellar, J. L. Bella, and J. A. Lisenti, J. Histochem. Cytochem. 45, 97–106 (1997).PubMedGoogle Scholar
  38. 38.
    B. Mullah, A. Alex, Tetrahedron Lett. 38(33), 5751–54 (1997).CrossRefGoogle Scholar
  39. 39.
    K. Yamana, Y. Ohoshi, K. Nunota, M. Kitamura, H. Nakano, O. Sangen, and T. Shimidzy, Tetrahedron Lett. 32, 6347–50 (1991).CrossRefGoogle Scholar
  40. 40.
    G. Tang, J. M. Lawlor, G. W. Tregear, and J. Haralambidis, J. Am. Chem. Soc. 117, 12151–58 (1995).CrossRefGoogle Scholar
  41. 41.
    K. V. Balakin, V. A. Korshun, G. V. Mikhalev II Maleu, A. P. Molakhov, I. A. Prokhovenko, and Y. A. Berlin, Biosens. Bioelectron. 13, 771–77 (1998).CrossRefPubMedGoogle Scholar
  42. 42.
    N. T. Thuong and M. Chassignol, Tetrahedron Lett. 29, 5905–8 (1988).CrossRefGoogle Scholar
  43. 43.
    C. Cazenave, M. Loreau, N. T. Thuong, J. J. Toulme, and C. Helene, Nucleic Acids Res. 15, 4717–36 (1987).CrossRefPubMedGoogle Scholar
  44. 44.
    J. Eisaks, R. Renhofa, and E. Bizdeno, Latv. Zinat. Akad. Vestis. B 11–12, 97 (1994).Google Scholar
  45. 45.
    S. Singh and R. K. Singh, J. Fluoresc. 17, 139–48 (2007).CrossRefPubMedGoogle Scholar
  46. 46.
    K. K. Dubey, R. K. Singh, and K. Misra, Neurochem. Int. 31(3), 405–12 (1997).CrossRefPubMedGoogle Scholar
  47. 47.
    P. R. Langer, A. A. Waldrop, and D. C. Ward, Proc. Natl. Acad. Sci. U S A 78, 6633 (1981).CrossRefPubMedGoogle Scholar
  48. 48.
    J. J. Leary, D. J. Brigati, and D. C. Ward,Proc. Natl. Acad. Sci. U S A 80, 4045 (1983).CrossRefPubMedGoogle Scholar
  49. 49.
    A. Marasuji and R. B. Wallace, DNA 3, 269 (1986).Google Scholar
  50. 50.
    I. C. Gillan and G. M. Tener, Anal. Biochem. 157, 199 (1986).CrossRefGoogle Scholar
  51. 51.
    G. L. Trainor and M. A. Jenson; Nucleic Acid Res. 16, 11846 (1988).CrossRefPubMedGoogle Scholar
  52. 52.
    N. D. Sinha and R. M. Cook, Nucleic Acid Res. 16, 2659 (1988).CrossRefPubMedGoogle Scholar
  53. 53.
    B. A. Connolly and P. Rider, Nucleic Acid Res. 13, 4445 (1985).CrossRefGoogle Scholar
  54. 54.
    D. P. Zimmer and D. M. Crothers, Proc. Natl. Acad. Sci. U S A 92(8), 3091–95 (1995).CrossRefPubMedGoogle Scholar
  55. 55.
    K. K. Dubey, R. K. Singh, and K. Misra, Indian J. Chem. 34B, 876–78 (1995).Google Scholar
  56. 56.
    K. K. Dubey, R. K. Singh, R. K. Pandey, M. Mohan, S. Tripathi, and K. Misra, J. Int. Acad. Phy. Sci. 1(1), 13–18 (1997).Google Scholar
  57. 57.
    J. L. Ruth, DNA 3, 123 (1984).Google Scholar
  58. 58.
    D. E. Bergstorm and J. L. Ruth, J. Carbohydr. Nucleosides Nucleotides 4, 257–89 (1977).Google Scholar
  59. 59.
    D. E. Bergstorm and J. L. Ruth J. Am. Chem. Soc. 98, 1587–89 (1976).CrossRefGoogle Scholar
  60. 60.
    R. B. Meyer, J. C. Tabone, G. Hurst, T. M. Smith, and H. Gamper, J. Am. Chem. Soc. 111, 8517–19 (1989).CrossRefGoogle Scholar
  61. 61.
    J. L. Ruth, US Patent no. 4 948 882 ‘Single-Stranded Labeled Oligonucleotides, Reactive Monomers, and Methods of Synthesis’ (1990).Google Scholar
  62. 62.
    U. Pieles, B. S. Sproat, and G. M. Lamm, Nucleic Acid Res., 18, 4355–60 (1990).CrossRefPubMedGoogle Scholar
  63. 63.
    D. Singh, V. Kumar, and K. N. Ganesh, Nucleic Acid Res. 18, 3339–45 (1990).CrossRefPubMedGoogle Scholar
  64. 64.
    D. Shugar, FEBS Lett. 40, S48–62 (1974).CrossRefPubMedGoogle Scholar
  65. 65.
    D. Shugar, In Virus Cell Interactions and Viral Antimetabolites, Academic press, New York, 193–207 (1972).Google Scholar
  66. 66.
    M. Swierkowski and D. Shugar, J. Med. Chem. 12, 533–34 (1969).CrossRefPubMedGoogle Scholar
  67. 67.
    E. De Clercq and D. Shugar, Biochem. Pharmacol. 24, 1073–78 (1975).CrossRefPubMedGoogle Scholar
  68. 68.
    B. R. Baker, In Design of Active-Site-Directed Irreversible Enzyme Inhibitors, Wiley, New York, 94 (1967).Google Scholar
  69. 69.
    T. K. Bradshaw, D. W. Hutchinson, Chem. Soc. Rev. 6, 43–62 (1977).CrossRefGoogle Scholar
  70. 70.
    S. Sinha, R. Srivastava, E. De Clercq, and R. K. Singh, Nucleosides Nucleotides Nucleic Acids 23(12), 1815–24 (2004).CrossRefPubMedGoogle Scholar
  71. 71.
    W. T. Markiewicz, et. al., Nucleic Acid Res. 25(18), 3672–80 (1997).CrossRefPubMedGoogle Scholar
  72. 72.
    M. J. Gait, Oligonucleotide synthesis: A practical approach, IRL press, London, 47–81 (1984).Google Scholar
  73. 73.
    E. Kierzek and R. Kierzek, Nucleic Acid Res. 31(15), 4461–71 (2003).CrossRefPubMedGoogle Scholar
  74. 74.
    S. Singh and R. K. Singh, Curr. Sci. 91(6), 836–39 (2006).Google Scholar
  75. 75.
    S. Singh and R. K. Singh, Nucleotides Nucleosides Nucleic Acids 26(10–12), 1573–76 (2007).CrossRefGoogle Scholar
  76. 76.
    S. Singh, and R. K. Singh, Nucleotides Nucleosides Nucleic Acids 26(5), 521–31(2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ramendra K. Singh
    • 1
  • Shipra Agarwal
    • 2
  1. 1.Nucleic Acids Research Laboratory, Department of ChemistryUniversity of AllahabadAllahabadIndia
  2. 2.Department of ChemistryIndian Institute of Technology Bombay, PowaiMumbaiIndia

Personalised recommendations